【題目】已知函數(shù).

若函數(shù)圖象在點(diǎn)處的切線方程為,求的值;

求函數(shù)的極值;

,且對(duì)任意的,恒成立,求實(shí)數(shù)的取值范圍.

【答案】;.

【解析】利用導(dǎo)數(shù)的幾何意義,先對(duì)進(jìn)行求導(dǎo),再利用,可求出的值;求出的表達(dá)式,再分別對(duì)兩種進(jìn)行討論,可得到函數(shù)的極值;函數(shù)恒成立問(wèn)題,兩種思路,一種是,另一種是用參變分離的方法求解.

試題分析:,.

函數(shù)圖象在點(diǎn)處的切線方程為

由題意可知,函數(shù)的定義域?yàn)?/span>

當(dāng)時(shí),,為增函數(shù),,為減函數(shù),所以,.

當(dāng)時(shí),,為減函數(shù),,,為增函數(shù),所以,.

對(duì)任意的,恒成立等價(jià)于當(dāng)時(shí),對(duì)任意的,成立,當(dāng)時(shí),由可知,函數(shù)上單調(diào)遞增,在上單調(diào)遞減,而,所以的最小值為,當(dāng)時(shí),,時(shí),,顯然不滿足,

當(dāng)時(shí),令得,,

當(dāng),即時(shí),在,所以單調(diào)遞增,所以,只需,得,所以.

當(dāng),即時(shí),在,,單調(diào)遞增,在,單調(diào)遞減,所以,

只需,得,所以.

當(dāng),即時(shí),顯然在,單調(diào)遞增,,不成立,………………13分

綜上所述,的取值范圍是.

用分離參數(shù)做答酌情給分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且acosC+ccosA=2bcosA.
(1)求角A的值;
(2)若, ,求ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在某次測(cè)驗(yàn)中,有6位同學(xué)的平均成績(jī)?yōu)?5分, 用xn表示編號(hào)為n(n=1,2,,6)的同學(xué)所得成績(jī),且前5位同學(xué)的成績(jī)?nèi)缦拢?/span>

編號(hào)n

1

2

3

4

5

成績(jī)xn

70

76

72

70

72

(1)求第6位同學(xué)的成績(jī)x6,及這6位同學(xué)成績(jī)的標(biāo)準(zhǔn)差s;

(2)從前5位同學(xué)中選2位同學(xué),求恰有1位同學(xué)成績(jī)?cè)趨^(qū)間(68,75)中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某重點(diǎn)高中擬把學(xué)校打造成新型示范高中,為此制定了學(xué)生七不準(zhǔn),一日三省十問(wèn)等新的規(guī)章制度.新規(guī)章制度實(shí)施一段時(shí)間后,學(xué)校就新規(guī)章制度隨機(jī)抽取部分學(xué)生進(jìn)行問(wèn)卷調(diào)查,調(diào)查卷共有10個(gè)問(wèn)題,每個(gè)問(wèn)題10分,調(diào)查結(jié)束后,按分?jǐn)?shù)分成5組 ,,,,,并作出頻率分布直方圖與樣本分?jǐn)?shù)的莖葉圖(圖中僅列出了得分在,的數(shù)據(jù)).

(1)求樣本容量和頻率分布直方圖中的的值;

(2)在選取的樣本中,從分?jǐn)?shù)在70分以下的學(xué)生中隨機(jī)抽取2名學(xué)生進(jìn)行座談會(huì),求所抽取的2名學(xué)生中恰有一人得分在內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且首項(xiàng)a1≠3,an1Sn3nn∈N*).

1)求證:數(shù)列{Sn3n}是等比數(shù)列;

2)若{an}為遞增數(shù)列,求a1的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)實(shí)數(shù)滿足不等式,函數(shù)無(wú)極值點(diǎn).

(1”為假命題,“真命題,求實(shí)數(shù)取值范圍;

(2已知. ”為真命題,并記為,必要不充分條件,求實(shí)數(shù)取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校為了了解學(xué)生使用手機(jī)的情況,分別在高一和高二兩個(gè)年級(jí)各隨機(jī)抽取了100名學(xué)生進(jìn)行調(diào)查.下面是根據(jù)調(diào)查結(jié)果繪制的學(xué)生日均使用手機(jī)時(shí)間的頻數(shù)分布表和頻率分布直方圖,將使用手機(jī)時(shí)間不低于80分鐘的學(xué)生稱(chēng)為“手機(jī)迷”.

學(xué)生日均使用手機(jī)時(shí)間的頻數(shù)分布表

時(shí)間分組

頻數(shù)

[0,20

12

[20,40

20

[40,60

24

[60,80

18

[80,100

22

[100,120]

4

1將頻率視為概率,估計(jì)哪個(gè)年級(jí)的學(xué)生是“手機(jī)迷”的概率大?請(qǐng)說(shuō)明理由.

2在高的抽查中,已知隨機(jī)抽到的女生共有55名,其中10名為“手機(jī)迷”.根據(jù)已知條件完成下面的2×2列聯(lián)表,并據(jù)此資料你有多大的把握認(rèn)為“手機(jī)迷”與性別有關(guān)?

非手機(jī)迷

手機(jī)迷

合計(jì)

合計(jì)

附:隨機(jī)變量其中為樣本總量

參考數(shù)據(jù)

0.15

0.10

0.05

0.025

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】調(diào)查表明,高三學(xué)生的幸福感與成績(jī),作業(yè)量,人際關(guān)系的滿意度的指標(biāo)有極強(qiáng)的相關(guān)性,現(xiàn)將這三項(xiàng)的滿意度指標(biāo)分別記為,并對(duì)它們進(jìn)行量化:0表示不滿意,1表示基本滿意,2表示滿意.再用綜合指標(biāo)的值評(píng)定高三學(xué)生的幸福感等級(jí):若,則幸福感為一級(jí);若,則幸福感為二級(jí);若,則幸福感為三級(jí). 為了了解目前某高三學(xué)生群體的幸福感情況,研究人員隨機(jī)采訪了該群體的10名高三學(xué)生,得到如下結(jié)果:

1在這10名被采訪者中任取兩人,求這兩人的成績(jī)滿意度指標(biāo)相同的概率;

2從幸福感等級(jí)是一級(jí)的被采訪者中任取一人,其綜合指標(biāo)為,從幸福感等級(jí)不是一級(jí)的被采訪者中任取一人,其綜合指標(biāo)為,記隨機(jī)變量,求的分布列及其數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)為常數(shù),),且數(shù)列是首項(xiàng)為2,公差為2的等差數(shù)列.

(1)若,當(dāng)時(shí),求數(shù)列的前項(xiàng)和;

(2)設(shè),如果中的每一項(xiàng)恒小于它后面的項(xiàng),求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案