【題目】如圖,將長方形OAA1O1(及其內(nèi)部)繞OO1旋轉(zhuǎn)一周形成圓柱,其中,弧的長為,AB為⊙O的直徑.
(1)在弧上是否存在點(,在平面的同側(cè)),使,若存在,確定其位置,若不存在,說明理由.
(2)求二面角的余弦值
【答案】(1)存在,當(dāng)為圓柱的母線時,;(2).
【解析】
(1)當(dāng)為圓柱的母線時,連接,,,根據(jù)平面得到,根據(jù)圓的直徑為得到,從而得到平面,再利用線面垂直的性質(zhì)即可得到.
(2)首先以為原點,,分別為,軸,垂直于,軸直線為軸建立空間直角坐標(biāo)系,分別計算平面和平面的法向量,代入公式計算即可.
存在,當(dāng)為圓柱的母線時,.
如圖所示:
連接,,,
因為為圓柱的母線,所以平面,
又因為平面,所以.
因為為圓的直徑,所以.
,,,所以平面.
因為平面,所以.
(2)以為原點,,分別為,軸,
垂直于,軸直線為軸建立空間直角坐標(biāo)系,如圖所示:
,,,
因為的長為,所以,
,.
設(shè)平面的法向量,
,令,解得,.
所以.
因為軸垂直平面,所以設(shè)平面的法向量.
所以,
因為二面角的平面角為銳角,所以其余弦值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,為正三角形,為棱的中點,,,平面平面
(1)求證:平面平面;
(2)若是棱上一點,與平面所成角的正弦值為,求二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在傳染病學(xué)中,通常把從致病刺激物侵人機體或者對機體發(fā)生作用起,到機體出現(xiàn)反應(yīng)或開始呈現(xiàn)該疾病對應(yīng)的相關(guān)癥狀時止的這一階段稱為潛伏期. 一研究團隊統(tǒng)計了某地區(qū)1000名患者的相關(guān)信息,得到如下表格:
潛伏期(單位:天) | |||||||
人數(shù) |
(1)求這1000名患者的潛伏期的樣本平均數(shù)x (同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表) ;
(2)該傳染病的潛伏期受諸多因素的影響,為研究潛伏期與患者年齡的關(guān)系,以潛伏期是否超過6天為標(biāo)準(zhǔn)進行分層抽樣,從上述1000名患者中抽取200人,得到如下列聯(lián)表
潛伏期天 | 潛伏期天 | 總計 | |
歲以上(含歲) | |||
歲以下 | |||
總計 |
(3)以這1000名患者的潛伏期超過6天的頻率,代替該地區(qū)1名患者潛伏期超過6天發(fā)生的概率,每名患者的潛伏期是否超過6天相互獨立,為了深入研究,該研究團隊隨機調(diào)查了20名患者,其中潛伏期超過6天的人數(shù)最有可能(即概率最大)是多少?
附:
,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(Ⅰ)若,求在區(qū)間[-1,2]上的取值范圍;
(Ⅱ)若對任意, 恒成立,記,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線過點則下列結(jié)論正確的是( )
A.點P到拋物線焦點的距離為
B.過點P作過拋物線焦點的直線交拋物線于點Q,則△OPQ的面積為
C.過點P與拋物線相切的直線方程為
D.過點P作兩條斜率互為相反數(shù)的直線交拋物線于M,N點則直線MN的斜率為定值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線的焦點為,,是拋物線上的兩點,線段的垂直平分線交軸于點,若.
(1)求點的坐標(biāo);
(2)求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:().下面表格所確定的點中,恰有三個點在橢圓上.
1 | ||||
0 |
(1)求橢圓的方程;
(2)已知為坐標(biāo)原點,點,分別為的上下頂點,直線經(jīng)過的右頂點,且與的另一個公共點為,直線,相交于點,若與軸的交點異于,,證明為定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com