【題目】在①離心率,②橢圓過點(diǎn),③面積的最大值為,這三個條件中任選一個,補(bǔ)充在下面(橫線處)問題中,解決下面兩個問題.

設(shè)橢圓的左、右焦點(diǎn)分別為,過且斜率為的直線交橢圓于兩點(diǎn),已知橢圓的短軸長為,________.

1)求橢圓的方程;

2)若線段的中垂線與軸交于點(diǎn),求證:為定值.

【答案】1)選①,2)證明見解析

【解析】

1)選①,根據(jù)題意,得到,求解,即可得出結(jié)果;

2)先討論時,求出;再討論時,設(shè)直線的方程為,,聯(lián)立直線與橢圓方程,根據(jù)韋達(dá)定理,以及弦長公式等,求出,再求出線段的中垂線方程,得到,求出,進(jìn)而可求出結(jié)果.

1)選①,由題意可得:,解得

所以所求橢圓的方程為;

2)(i)當(dāng)時,

ii)當(dāng)時,由題意可得:.

設(shè)直線的方程為,設(shè),

整理得:

顯然,且,

所以

所以線段的中點(diǎn),

則線段的中垂線方程為

,可得,即,又,

所以,

所以,即

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,橢圓截直線所得的線段的長度為.

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)直線與橢圓交于兩點(diǎn),點(diǎn)是橢圓上的點(diǎn),是坐標(biāo)原點(diǎn),若,判定四邊形的面積是否為定值?若為定值,求出定值;如果不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,設(shè)橢圓的左焦點(diǎn)為,左準(zhǔn)線為為橢圓上任意一點(diǎn),直線,垂足為,直線交于點(diǎn)

(1)若,且,直線的方程為.①求橢圓的方程;②是否存在點(diǎn),使得?若存在,求出點(diǎn)的坐標(biāo);若不存在,說明理由.

(2)設(shè)直線與圓交于兩點(diǎn),求證:直線均與圓相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知拋物線的焦點(diǎn)Fy軸上,其準(zhǔn)線與雙曲線的下準(zhǔn)線重合.

1)求拋物線的標(biāo)準(zhǔn)方程;

2)設(shè)A(,)(0)是拋物線上一點(diǎn),且AF,B是拋物線的準(zhǔn)線與y軸的交點(diǎn).過點(diǎn)A作拋物線的切線l,過點(diǎn)Bl的平行線l′,直線l′與拋物線交于點(diǎn)M,N,求△AMN的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某社區(qū)有居民人,為了迎接第十一個“全民健身日”的到來,居委會從中隨機(jī)抽取了名居民,統(tǒng)計了他們本月參加戶外運(yùn)動時間(單位:小時)的數(shù)據(jù),并將數(shù)據(jù)進(jìn)行整理,分為組:,,,得到如圖所示的頻率分布直方圖.

(Ⅰ)試估計該社區(qū)所有居民中,本月戶外運(yùn)動時間不小于小時的人數(shù);

(Ⅱ)已知這名居民中恰有名女性的戶外運(yùn)動時間在,現(xiàn)從戶外運(yùn)動時間在的樣本對應(yīng)的居民中隨機(jī)抽取人,求至少抽到名女性的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C的方程為,離心率為,它的一個頂點(diǎn)恰好是拋物線的焦點(diǎn).

(Ⅰ)求橢圓C的方程;

(Ⅱ)過動點(diǎn)的直線交軸的負(fù)半軸于點(diǎn),交C于點(diǎn)(在第一象限),且是線段的中點(diǎn),過點(diǎn)作x軸的垂線交C于另一點(diǎn),延長線交C于點(diǎn).

(i)設(shè)直線,的斜率分別為,證明:

(ii)求直線的斜率的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,E為AB的中點(diǎn),P為以A為圓心、AB為半徑的圓弧上的任意一點(diǎn),設(shè)向量=λ+μ,則λ+μ的最小值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}為等差數(shù)列,a7a210,且a1a6,a21依次成等比數(shù)列.

1)求數(shù)列{an}的通項(xiàng)公式;

2)設(shè)bn,數(shù)列{bn}的前n項(xiàng)和為Sn,若Sn,求n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點(diǎn)為,點(diǎn)上且其橫坐標(biāo)為1,以為圓心、為半徑的圓與的準(zhǔn)線相切.

(1)求的值;

(2)過點(diǎn)的直線交于,兩點(diǎn),以為鄰邊作平行四邊形,若點(diǎn)關(guān)于的對稱點(diǎn)在上,求的方程.

查看答案和解析>>

同步練習(xí)冊答案