【題目】已知函數(shù)

(1)若函數(shù)有兩個零點,證明:;

(2)設(shè)函數(shù)的兩個零點為,.證明:

【答案】1)證明見解析;(2)證明見解析

【解析】

(1)參變分離可得,構(gòu)造函數(shù),判斷的單調(diào)性及圖象特征,使與直線有兩個交點,即滿足題意,從而可證明結(jié)論;

2)易知,兩式相減得,要證,即證,進而可將問題轉(zhuǎn)化為證明,令,則,即證,進而構(gòu)造函數(shù),只需證明即可.

(1)證明:由,可得,

,則,

時,,單調(diào)遞增;

時,單調(diào)遞減;

所以

又因為當時,;

時,,且當時,;

所以有兩個零點時,

2)由題意知,,

兩式相減得:

要證,即證,

只需證,

即證.

,則,即證,

,則,令,則,

所以上單調(diào)遞增,,即,

所以上單調(diào)遞增,

所以,即,

所以,

成立.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的前n項和為,且n、成等差數(shù)列,.

1)證明數(shù)列是等比數(shù)列,并求數(shù)列的通項公式;

2)若數(shù)列中去掉數(shù)列的項后余下的項按原順序組成數(shù)列,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 的離心率為,直線交橢圓兩點,橢圓的右頂點為,且滿足.

(1)求橢圓的方程;

(2)若直線與橢圓交于不同兩點、,且定點滿足,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,圓的直徑,為圓周上不與點重合的點,垂直于圓所在的平面,

1)求證:

2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)若函數(shù)有兩個零點,證明:;

(2)設(shè)函數(shù)的兩個零點為.證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)當時,討論函數(shù)的單調(diào)性;

2)若曲線在點處的切線有且只有一個公共點,求正數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】己知函數(shù),,.

1)求函數(shù)的零點個數(shù);

2)若對任意恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】冠狀病毒是一個大型病毒家族,己知可引起感冒以及中東呼吸綜合征()和嚴重急性呼吸綜合征()等較嚴重疾病.而今年出現(xiàn)在湖北武漢的新型冠狀病毒()是以前從未在人體中發(fā)現(xiàn)的冠狀病毒新毒株.人感染了新型冠狀病毒后常見體征有呼吸道癥狀、發(fā)熱、咳嗽、氣促和呼吸困難等.在較嚴重病例中,感染可導致肺炎、嚴重急性呼吸綜合征、腎衰竭,甚至死亡.

某醫(yī)院為篩查冠狀病毒,需要檢驗血液是否為陽性,現(xiàn)有n)份血液樣本,有以下兩種檢驗方式:

方式一:逐份檢驗,則需要檢驗n.

方式二:混合檢驗,將其中k)份血液樣本分別取樣混合在一起檢驗.

若檢驗結(jié)果為陰性,這k份的血液全為陰性,因而這k份血液樣本只要檢驗一次就夠了,如果檢驗結(jié)果為陽性,為了明確這k份血液究竟哪幾份為陽性,就要對這k份再逐份檢驗,此時這k份血液的檢驗次數(shù)總共為.

假設(shè)在接受檢驗的血液樣本中,每份樣本的檢驗結(jié)果是陽性還是陰性都是獨立的,且每份樣本是陽性結(jié)果的概率為p.現(xiàn)取其中k)份血液樣本,記采用逐份檢驗方式,樣本需要檢驗的總次數(shù)為,采用混合檢驗方式,樣本需要檢驗的總次數(shù)為.

1)若,試求p關(guān)于k的函數(shù)關(guān)系式;

2)若p與干擾素計量相關(guān),其中)是不同的正實數(shù),

滿足)都有成立.

i)求證:數(shù)列等比數(shù)列;

ii)當時,采用混合檢驗方式可以使得樣本需要檢驗的總次數(shù)的期望值比逐份檢驗的總次數(shù)的期望值更少,求k的最大值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四邊形是邊長為2的菱形,,,都垂直于平面,且.

1)證明:平面;

2)若,求三棱錐的體積.

查看答案和解析>>

同步練習冊答案