某一容器的三視圖如圖所示,則該幾何體的體積為
 

考點(diǎn):由三視圖求面積、體積
專題:計(jì)算題
分析:由三視圖知幾何體為邊長為2的正方體挖去一個(gè)圓錐,且圓錐的底面直徑為2,圓錐的高為2,將三視圖的數(shù)據(jù)代入正方體與圓錐的體積公式,可求得體積.
解答: 解:由三視圖知幾何體為邊長為2的正方體挖去一個(gè)圓錐,
且圓錐的底面直徑為2,圓錐的高為2,
∴正方體的體積為8;
V圓錐=
1
3
×π×12×2=
3
,
∴幾何體的體積V=8-
3
,
故答案是8-
3
點(diǎn)評:本題考查了由三視圖求體積,解答的關(guān)鍵是判斷幾何體的形狀及正確運(yùn)用三視圖的數(shù)據(jù).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知sinα•tanα=1,則cosα=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某幾何體的三視圖如圖所示,該幾何體的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x+
m
x
+2
(m為實(shí)常數(shù)).
(1)若函數(shù)y=f(x)圖象上動(dòng)點(diǎn)P到定點(diǎn)Q(0,2)的距離的最小值為
2
,求實(shí)數(shù)m的值;
(2)若函數(shù)y=f(x)在區(qū)間[2,+∞)上是增函數(shù),試用函數(shù)單調(diào)性的定義求實(shí)數(shù)m的取值范圍;
(3)設(shè)m<0,若不等式f(x)≤kx在x∈[
1
2
 , 1]
有解,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將直線l1:x+y-3=0繞著點(diǎn)P(1,2)按逆時(shí)針方向旋轉(zhuǎn)45°后得到直線l2,則l2的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式
x
x-1
<0
的解是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線
2
x-y+m=0與圓x2+y2-2y-2=0相切,則實(shí)數(shù)m等于( 。
A、-3
3
3
B、-3
3
或3
3
C、4或-2
D、-4或2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)E(2,1)和圓O:x2+y2=16.
(Ⅰ)過點(diǎn)E的直線l被圓O所截得的弦長為4
3
,求直線l的方程;
(Ⅱ)試探究是否存在這樣的點(diǎn)M:M是圓O內(nèi)部的整點(diǎn)(平面內(nèi)橫、縱坐標(biāo)均為整數(shù)的點(diǎn)稱為整點(diǎn)),且△OEM的面積S△OEM=2?若存在,求出點(diǎn)M的坐標(biāo),若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果a<b<0,那么下面一定成立的是( 。
A、a-b>0
B、ac<bc
C、
1
a
1
b
D、a2>b2

查看答案和解析>>

同步練習(xí)冊答案