某計算裝置有一個數(shù)據(jù)入口A和一個運算出口B,從入口A輸入一個正整數(shù)n時,計算機通過循環(huán)運算,在出口B輸出一個運算結(jié)果,記為f(n).計算機的工作原理如下:為默認(rèn)值,f(n+1)的值通過執(zhí)行循環(huán)體“f(n+1)=”后計算得出.則f(2)=       ;當(dāng)從入口A輸入的正整數(shù)n=__     _時,從出口B輸出的運算結(jié)果是.
,12.

試題分析:由得,.
,
所以,
.
所以,由.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

運貨卡車以每小時x千米的勻速行駛130千米,按交通法規(guī)限制50≤x≤100(單位:千米/小時).假設(shè)汽油的價格是每升2元,而汽車每小時耗油()升,司機的工資是每小時14元.
(1)求這次行車總費用y關(guān)于x的表達(dá)式;
(2)當(dāng)x為何值時,這次行車的總費用最低,并求出最低費用的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

提高過江大橋的車輛通行能力可改善整個城市的交通狀況.在一般情況下,大橋上的車流速度v(單位:千米/小時)是車流密度(單位:輛/千米)的函數(shù).當(dāng)橋上的的車流密度達(dá)到200輛/千米時,造成堵塞,此時車流速度為0;當(dāng)車流密度不超過20輛/千米時,車流速度為60千米/小時,研究表明:當(dāng)時,車流速度是車流密度x的一次函數(shù).
(Ⅰ)當(dāng)時,求函數(shù)的表達(dá)式;
(Ⅱ)當(dāng)車流密度為多大時,車流量(單位時間內(nèi)通過橋上某觀察點的車輛數(shù),單位:輛/每小時)可以達(dá)到最大,并求出最大值(精確到1輛/小時).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)是常數(shù)且
(1)若函數(shù)的一個零點是1,求的值;
(2)求上的最小值;
(3)記,求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

一種放射性元素,最初的質(zhì)量為,按每年衰減.
(1)求年后,這種放射性元素的質(zhì)量的函數(shù)關(guān)系式;
(2)求這種放射性元素的半衰期(質(zhì)量變?yōu)樵瓉淼?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030322195339.png" style="vertical-align:middle;" />時所經(jīng)歷的時間).(

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列四組函數(shù)中,其函數(shù)圖象相同的是 (    ).
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某醫(yī)藥研究所開發(fā)一種新藥,據(jù)監(jiān)測,如果成人按規(guī)定劑量服用該藥,服藥后每毫升血液中的含藥量與服藥后的時間之間近似滿足如圖所示的曲線.其中是線段,曲線段是函數(shù)是常數(shù)的圖象.

(1)寫出服藥后每毫升血液中含藥量關(guān)于時間的函數(shù)關(guān)系式;
(2)據(jù)測定:每毫升血液中含藥量不少于時治療有效,假若某病人第一次服藥為早上,為保持療效,第二次服藥最遲是當(dāng)天幾點鐘?
(3)若按(2)中的最遲時間服用第二次藥,則第二次服藥后再過,該病人每毫升血液中含藥量為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

方程的解所在的區(qū)間為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

對于定義域為的函數(shù),如果同時滿足以下三個條件:
①對任意的,總有;②;③若都有 成立;
則稱函數(shù)函數(shù).
下面有三個命題:
(1)若函數(shù)函數(shù),則;(2)函數(shù)函數(shù);
(3)若函數(shù)函數(shù),假定存在,使得,且, 則;        其中真命題是________.(填上所有真命題的序號)

查看答案和解析>>

同步練習(xí)冊答案