【題目】已知函數(shù),其中

(1)若的極值點,求的值;

(2)求函數(shù)的單調(diào)區(qū)間和極值.

【答案】(1);(2)見解析

【解析】

(1)求出函數(shù)的導(dǎo)數(shù),根據(jù)f′(1)=0,求出m的值即可;(2)求出函數(shù)的導(dǎo)數(shù),通過討論m的范圍,得到函數(shù)的單調(diào)區(qū)間,從而判斷函數(shù)的極值即可.

(1)f′(x)=4m2x+4m﹣

若x=1是f(x)的極值點,

則f′(1)=4m2+4m﹣3=0,

解得:m=﹣或m=

(2)函數(shù)f(x)的定義域是(0,+∞),

f′(x)=,

當(dāng)m>0時,令f′(x)>0,解得:x>

令f′(x)<0,解得:0<x<,

故f(x)在(0,)遞減,在(,+∞)遞增,

f(x)的極小值為f()=+3ln(2m);無極大值.

當(dāng)m<0時,令f′(x)>0,解得:x>﹣,

令f′(x)<0,解得:0<x<﹣,

故f(x)在(0,﹣)遞減,在(﹣,+∞)遞增,

故f(x)的極小值為f(﹣)=﹣﹣3ln(﹣);無極大值.

當(dāng)m=0時,f′(x)<0,減區(qū)間為(0,+∞),無增區(qū)間和極值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是一正方體被截去一部分后所得幾何體的三視圖,則該幾何體的表面積為(

A.54
B.162
C.54+18
D.162+18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知方向向量為v=(1, )的直線l過點(0,﹣2 )和橢圓C: =1(a>b>0)的焦點,且橢圓C的中心關(guān)于直線l的對稱點在橢圓C的右準(zhǔn)線上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)是否存在過點E(﹣2,0)的直線m交橢圓C于點M、N,滿足 = .cot∠MON≠0(O為原點).若存在,求直線m的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)A1 , A2 , A3 , …,An是集合{1,2,3,…,n}的n個非空子集(n≥2),定義aij= ,其中i,j=1,2,…,n,這樣得到的n2個數(shù)之和記為S(A1 , A2 , A3 , …,An),簡記為S,下列三種說法:①S與n的奇偶性相同;②S是n的倍數(shù);③S的最小值為n,最大值為n2 . 其中正確的判斷是(
A.①②
B.①③
C.②③
D.③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)為下崗人員免費提供財會和計算機培訓(xùn),以提高下崗人員的再就業(yè)能力.每名下崗人員可以選擇參加一項培訓(xùn)、參加兩項培訓(xùn)或不參加培訓(xùn).已知參加過財會培訓(xùn)的有60%,參加過計算機培訓(xùn)的有75%,假設(shè)每個人對培訓(xùn)項目的選擇是相互獨立的,且各人的選擇相互之間沒有影響.

1)任選1名下崗人員,求該人參加過培訓(xùn)的概率;

2)任選3名下崗人員,記ξ3人中參加過培訓(xùn)的人數(shù),求ξ的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】本小題共l2分

如圖,在直三棱柱ABCA1B1C1中,∠BAC=90°,AB=AC=AA1=1,延長A1C1至點P,使C1PA1C1,連接AP交棱CC1D

(Ⅰ)求證:PB1∥平面BDA1;

(Ⅱ)求二面角AA1DB的平面角的余弦值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于函數(shù)給出定義:

設(shè)是函數(shù)的導(dǎo)數(shù),是函數(shù)的導(dǎo)數(shù),若方程有實數(shù)解,則稱點為函數(shù)的“拐點”,

某同學(xué)經(jīng)過探究發(fā)現(xiàn):任何一個三次函數(shù)都有“拐點”:任意一個三次函數(shù)都有對稱中心,且“拐點”就是對稱中心,給定函數(shù),請根據(jù)上面探究結(jié)果:計算____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2sinωxcosωx+2 sin2ωx﹣ (ω>0)的最小正周期為π.
(1)求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)將函數(shù)f(x)的圖象向左平移 個單位長度,再向上平移1個單位長度,得到函數(shù)y=g(x)的圖象,求函數(shù)y=g(x)在 上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,右焦點為。斜率為1的直線與橢圓交于兩點,以為底邊作等腰三角形,頂點為。

1)求橢圓的方程;

2)求的面積。

查看答案和解析>>

同步練習(xí)冊答案