【題目】市政府為了節(jié)約用水,調(diào)查了100位居民某年的月均用水量(單位:),頻數(shù)分布如下:
分組 | |||||||||
頻數(shù) | 4 | 8 | 15 | 22 | 25 | 14 | 6 | 4 | 2 |
(1)根據(jù)所給數(shù)據(jù)將頻率分布直圖補(bǔ)充完整(不必說(shuō)明理由);
(2)根據(jù)頻率分布直方圖估計(jì)本市居民月均用水量的中位數(shù);
(3)根據(jù)頻率分布直方圖估計(jì)本市居民月均用水量的平均數(shù)(同一組數(shù)據(jù)由該組區(qū)間的中點(diǎn)值作為代表).
【答案】(1)直方圖見(jiàn)解析;(2)2.02;(3)2.02.
【解析】分析:(1)根據(jù)表格中數(shù)據(jù),求出所缺區(qū)間的縱坐標(biāo),即可將頻率分布直方圖補(bǔ)充完整;(2)根據(jù)直方圖可判斷中位數(shù)應(yīng)在組內(nèi),設(shè)中位數(shù)為,則,解得;(3)每個(gè)矩形的中點(diǎn)橫坐標(biāo)與該矩形的縱坐標(biāo)相乘后求和,即可得到本市居民月均用水量的平均數(shù).
詳解:(1)頻率分布直方圖如圖所示:
(2)∵0.04+0.08+0.15+0.22=0.49<0.5,
0.04+0.08+0.15+0.22+0.25=0.74>0.5,
∴中位數(shù)應(yīng)在[2,2.5)組內(nèi),設(shè)中位數(shù)為x,
則0.49+(x-2)×0.50=0.5,
解得x=2.02.
故本市居民月均用水量的中位數(shù)的估計(jì)值為2.02.
(3)0.25×0.04+0.75×0.08+1.25×0.15+1.75×0.22+2.25×0.25
+2.75×0.14+3.25×0.06+3.75×0.04+4.25×0.02
=2.02.
故本市居民月均用水量的平均數(shù)的估計(jì)值為2.02.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)的定義域?yàn)閇﹣1,1],圖象如圖1所示;函數(shù)g(x)的定義域?yàn)閇﹣2,2],圖象如圖2所示,設(shè)函數(shù)f(g(x))有m個(gè)零點(diǎn),函數(shù)g(f(x))有n個(gè)零點(diǎn),則m+n等于( 。
A. 6 B. 10 C. 8 D. 1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中, 的兩個(gè)頂點(diǎn)的坐標(biāo)分別為,三個(gè)內(nèi)角滿(mǎn)足.
(1)若頂點(diǎn)的軌跡為,求曲線(xiàn)的方程;
(2)若點(diǎn)為曲線(xiàn)上的一點(diǎn),過(guò)點(diǎn)作曲線(xiàn)的切線(xiàn)交圓于不同的兩點(diǎn)(其中在的右側(cè)),求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)為實(shí)數(shù),函數(shù).
(1)若,求的取值范圍;
(2)討論的單調(diào)性;
(3)當(dāng)時(shí),討論在區(qū)間內(nèi)的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于的一元二次方程,其中。
(I)若隨機(jī)選自集合,隨機(jī)選自集合,求方程有實(shí)根的概率;
(Ⅱ)若隨機(jī)選自區(qū)間,隨機(jī)選自區(qū)間,求方程有實(shí)根的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)列的前項(xiàng)和為,.
()證明數(shù)列是等比數(shù)列,求出數(shù)列的通項(xiàng)公式.
()設(shè),求數(shù)列的前項(xiàng)和.
()數(shù)列中是否存在三項(xiàng),它們可以構(gòu)成等比數(shù)列?若存在,求出一組符合條件的項(xiàng);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓與直線(xiàn)相切.
(1)求圓的方程;
(2)求直線(xiàn)截圓所得弦的長(zhǎng);
(3)過(guò)點(diǎn)作兩條直線(xiàn)與圓相切,切點(diǎn)分別為,求直線(xiàn)的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓: 的上下兩個(gè)焦點(diǎn)分別為,過(guò)點(diǎn)與軸垂直的直線(xiàn)交橢圓于兩點(diǎn), 的面積為,橢圓的離心率為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知為坐標(biāo)原點(diǎn),直線(xiàn)與軸交于點(diǎn),與橢圓交于兩個(gè)不同的點(diǎn),若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線(xiàn) 所圍成封閉圖形面積為,曲線(xiàn)是以曲線(xiàn)與坐標(biāo)軸的交點(diǎn)為頂點(diǎn)的橢圓, 離心率為. 平面上的動(dòng)點(diǎn)為橢圓外一點(diǎn),且過(guò)點(diǎn)
引橢圓的兩條切線(xiàn)互相垂直.
(1)求曲線(xiàn)的方程;
(2)求動(dòng)點(diǎn)的軌跡方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com