12.已知數(shù)列{an}滿足a1=1,an+1=$\frac{{{2^{n+1}}{a_n}}}{{{a_n}+{2^n}}}$.
(1)求數(shù)列{an}的通項公式;
(2)bn=n(n+1)an,求數(shù)列{bn}的前n項和Sn

分析 (1)數(shù)列{an}滿足a1=1,${a_{n+1}}=\frac{{{2^{n+1}}{a_n}}}{{{a_n}+{2^n}}}(n∈{N^*})$,變形為$\frac{{{2^{n+1}}}}{{{a_{n+1}}}}-\frac{2^n}{a_n}=1$,利用等差數(shù)列的通項公式即可得出.
(2)${b_n}=n(n+1){a_n}=n•{2^n}$,利用“錯位相減法”與等比數(shù)列的求和公式即可得出.

解答 (1)解:數(shù)列{an}滿足a1=1,${a_{n+1}}=\frac{{{2^{n+1}}{a_n}}}{{{a_n}+{2^n}}}(n∈{N^*})$,
∴$\frac{{{2^{n+1}}}}{{{a_{n+1}}}}=\frac{2^n}{a_n}+1$,
即$\frac{{{2^{n+1}}}}{{{a_{n+1}}}}-\frac{2^n}{a_n}=1$,∴數(shù)列$\{\frac{2^n}{a_n}\}$是公差為1的等差數(shù)列.
可得$\frac{2^n}{a_n}=\frac{2}{a_1}+n-1=n+1$,∴${a_n}=\frac{2^n}{n+1}$.
(2)${b_n}=n(n+1){a_n}=n•{2^n}$,
∴${S_n}=1×2+2×{2^2}+3×{2^3}+…+n•{2^n}$,$2{S_n}={2^2}+2×{2^3}+…+(n-1)•{2^n}+n•{2^{n+1}}$,
兩式相減得:$2{S_n}-{S_n}=2+{2^2}+…+{2^n}-n•{2^{n+1}}=\frac{{2({2^n}-1)}}{2-1}-n•{2^{n+1}}$=(1-n)•2n+1-2,
∴${S_n}=(n-1)•{2^{n+1}}+2$.

點評 本題考查了等差數(shù)列與等比數(shù)列的通項公式性質(zhì)與求和公式、“錯位相減法”,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

2.已知函數(shù)f(x)=4cosxsin(x+$\frac{π}{6}$)-1.
(1)求f(x)的最小正周期和增區(qū)間
(2)(6分)當x∈[-$\frac{π}{6},\frac{π}{4}$]時,求f(x)的最大值和最小值,并指出f(x)取得最值時對應的x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知集合A={1,2},B={2,4},則A∪B=( 。
A.{2}B.{1,2,2,4}C.D.{1,2,4}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知U=R,函數(shù)y=ln(1-x)的定義域為M,N={x|x2-x<0},則下列結(jié)論正確的是(  )
A.M∩N=MB.M∪(∁UN)=UC.M∩(∁UN)=∅D.M⊆∁UN

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.下面各組函數(shù)中是同一函數(shù)的是( 。
(1)$y=\sqrt{-2{x^3}}與y=x\sqrt{-2x}$
(2)$y={(\sqrt{x})^2}$與y=|x|
(3)$y=\sqrt{x+1}•\sqrt{x-1}與y=\sqrt{(x+1)(x-1)}$
(4)f(x)=x2-2x-1與g(t)=t2-2t-1.
A.(1)(3)(4)B.(1)(2)(3)C.(3)(4)D.(4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.現(xiàn)對高二某班全部50名學生測量其身高,測得學生的身高全部在155cm到195cm之間.將測量結(jié)果按如下方式分成8組:第一組[155,160),第二組[160,165),…,第八組[190,195),如圖是按上述分組得到的頻率分布直方圖的一部分.已知第一組與第八組的人數(shù)相同,第六組、第七組和第八組的人數(shù)依次成等差數(shù)列.
頻率分布直方圖:

頻率分布表:
分組頻數(shù)頻率頻率/組距
[180,185)xyz
[185,190)mnp
(1)求下列頻率分布表中所標字母的值,并補充完成頻率分布直方圖;
(2)根據(jù)頻率分布直方圖求出平均數(shù),眾數(shù),中位數(shù);
(3)若從身高屬于第六組和第八組的所有學生中隨機抽取2名學生,求至少有一名男生來自第六組的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.過△ABC的重心G的直線l分別與邊AB、AC交于F、E兩點,設(shè)$\overrightarrow{AE}$=x$\overrightarrow{AC}$,$\overrightarrow{AF}$=y$\overrightarrow{AB}$(x>0,y>0),則x+y的最小值為$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知{an}為等差數(shù)列,Sn為其前n項和,若a1=6,a3+a5=0,則S6=( 。
A.6B.5C.3D.0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.設(shè)實數(shù)x,y滿足不等式組$\left\{\begin{array}{l}2x-y+1≥0\\ x+m≤0\\ y-m≥0\end{array}\right.$(m<0),目標函數(shù)z=x-2y的最大值為9,則實數(shù)m的是-3.

查看答案和解析>>

同步練習冊答案