【題目】已知(其中,是自然對數(shù)的底數(shù)).
(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(2)若不等式對于恒成立,求實數(shù)的取值范圍.
【答案】(1)函數(shù)的減區(qū)間為,增區(qū)間為(2)
【解析】
(1)對函數(shù)求導(dǎo),通過導(dǎo)函數(shù)的不等式確定原函數(shù)的增減區(qū)間,即可得函數(shù)的單調(diào)區(qū)間.
(2)將所要證明的式子變形,建立一個函數(shù),求導(dǎo)后再建立一個新的函數(shù),再求導(dǎo).需要用到兩次求導(dǎo),通過最值確定正負號,再來確定原函數(shù)的單調(diào)性,通過單調(diào)性即可得到實數(shù)的取值范圍.
(1)當(dāng)時,,所以,
由得,,得,,
所以函數(shù)的減區(qū)間為,增區(qū)間為.
(2)由題意對于恒成立,
即等價于對于恒成立,
設(shè),則由得,,
當(dāng)0<x<時,g′(x)<0,g(x)單調(diào)遞減,
當(dāng)<x時,g′(x)>0,g(x)單調(diào)遞增,
所以,
令,則由得,
0<x<1時,t′(x)>0,t(x)單調(diào)遞增,1<x時,t′(x)<0,t(x)單調(diào)遞減,
所以在時取得極大值.
所以,當(dāng),的最小值;
當(dāng),的最小值,得;
綜上,.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標系中,斜率為k的動直線l過點,以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為.
(1)若直線l與曲線C有兩個交點,求這兩個交點的中點P的軌跡關(guān)于參數(shù)k的參數(shù)方程;
(2)在條件(1)下,求曲線的長度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(x﹣a)cosx﹣sinx,g(x)x3ax2,a∈R
(1)當(dāng)a=1時,求函數(shù)y=f(x)在區(qū)間(0,)上零點的個數(shù);
(2)令F(x)=f(x)+g(x),試討論函數(shù)y=F(x)極值點的個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解某市高三數(shù)學(xué)復(fù)習(xí)備考情況,該市教研機構(gòu)組織了一次檢測考試,并隨機抽取了部分高三理科學(xué)生數(shù)學(xué)成績繪制如圖所示的頻率分布直方圖.
(1)根據(jù)頻率分布直方圖,估計該市此次檢測理科數(shù)學(xué)的平均成績;(精確到個位)
(2)研究發(fā)現(xiàn),本次檢測的理科數(shù)學(xué)成績近似服從正態(tài)分布(,約為),按以往的統(tǒng)計數(shù)據(jù),理科數(shù)學(xué)成績能達到自主招生分數(shù)要求的同學(xué)約占.
(。估計本次檢測成績達到自主招生分數(shù)要求的理科數(shù)學(xué)成績大約是多少分?(精確到個位)
(ⅱ)從該市高三理科學(xué)生中隨機抽取人,記理科數(shù)學(xué)成績能達到自主招生分數(shù)要求的人數(shù)為,求的分布列及數(shù)學(xué)期望.(說明:表示的概率.參考數(shù)據(jù):)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓與x軸負半軸交于,離心率.
(1)求橢圓C的方程;
(2)設(shè)直線與橢圓C交于兩點,連接AM,AN并延長交直線x=4于兩點,若,直線MN是否恒過定點,如果是,請求出定點坐標,如果不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】第十三屆全國人大常委會第十一次會議審議的《固體廢物污染環(huán)境防治法(修訂草案)》中,提出推行生活垃圾分類制度,這是生活垃圾分類首次被納入國家立法中.為了解某城市居民的垃圾分類意識與政府相關(guān)法規(guī)宣傳普及的關(guān)系,對某試點社區(qū)抽取戶居民進行調(diào)查,得到如下的列聯(lián)表.
分類意識強 | 分類意識弱 | 合計 | |
試點后 | |||
試點前 | |||
合計 |
已知在抽取的戶居民中隨機抽取戶,抽到分類意識強的概率為.
(1)請將上面的列聯(lián)表補充完整,并判斷是否有的把握認為居民分類意識的強弱與政府宣傳普及工作有關(guān)?說明你的理由;
(2)已知在試點前分類意識強的戶居民中,有戶自覺垃圾分類在年以上,現(xiàn)在從試點前分類意識強的戶居民中,隨機選出戶進行自覺垃圾分類年限的調(diào)查,記選出自覺垃圾分類年限在年以上的戶數(shù)為,求分布列及數(shù)學(xué)期望.
參考公式:,其中.
下面的臨界值表僅供參考
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】詹姆斯·哈登(James Harden)是美國NBA當(dāng)紅球星,自2012年10月加盟休斯頓火箭隊以來,逐漸成長為球隊的領(lǐng)袖.2017-18賽季哈登當(dāng)選常規(guī)賽MVP(最有價值球員).
年份 | 2012-13 | 2013-14 | 2014-15 | 2015-16 | 2016-17 | 2017-18 |
年份代碼t | 1 | 2 | 3 | 4 | 5 | 6 |
常規(guī)賽場均得分y | 25.9 | 25.4 | 27.4 | 29.0 | 29.1 | 30.4 |
(Ⅰ)根據(jù)表中數(shù)據(jù),求y關(guān)于t的線性回歸方程(,*);
(Ⅱ)根據(jù)線性回歸方程預(yù)測哈登在2019-20賽季常規(guī)賽場均得分.
(附)對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為:,
(參考數(shù)據(jù),計算結(jié)果保留小數(shù)點后一位)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)).以為極點,軸的正半軸為極軸建立極坐標系,直線的極坐標方程為(),將曲線向左平移2個單位長度得到曲線.
(1)求曲線的普通方程和極坐標方程;
(2)設(shè)直線與曲線交于兩點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有兩個調(diào)查抽樣:(1)某班為了了解班級學(xué)生在家表現(xiàn)情況決定從10名家長中抽取3名參加座談會;(2)某研究部門在高考后從2000名學(xué)生(其中文科400名,理科1600名)中抽取200名考生作為樣本調(diào)查數(shù)學(xué)學(xué)科得分情況.
給出三種抽樣方法:Ⅰ.簡單隨機抽樣法;Ⅱ.系統(tǒng)抽樣法;Ⅲ.分層抽樣法.
則問題(1)、(2)選擇的抽樣方法合理的是( )
A.(1)選Ⅲ,(2)選ⅠB.(1)選Ⅰ,(2)選Ⅲ
C.(1)選Ⅱ,(2)選ⅠD.(1)選Ⅲ,(2)選Ⅱ
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com