已知復(fù)數(shù)z=(1+2i)(-2+i)-
3+i
1+i

(1)計(jì)算復(fù)數(shù)z;
(2)若z2+(2a-1)z-(1-i)b-16=0,求實(shí)數(shù)a,b的值.
考點(diǎn):復(fù)數(shù)代數(shù)形式的乘除運(yùn)算
專題:計(jì)算題,數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:(1)由復(fù)數(shù)代數(shù)形式的運(yùn)算性質(zhì)可求;
(2)代入z化簡后,由復(fù)數(shù)相等的條件可得方程組,解出即可;
解答: 解:(1)z=(1+2i)(-2+i)-
(3+i)(1-i)
(1+i)(1-i)
=-4-3i-
4-2i
2

=-4-3i-(2-i)=-6-2i.
(2)∵(-6-2i)2+(2a-1)(-6-2i)-(1-i)b-16=0,
∴32+24i-6(2a-1)-2(2a-1)i-b+bi-16=0,
∴22-12a-b+(26-4a+b)i=0,
22-12a-b=0
26-4a+b=0
,
解得a=3,b=-14.-6
點(diǎn)評:該題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an},滿足a3+a8=6,則此數(shù)列的前10項(xiàng)的和S10=( 。
A、10B、20C、30D、60

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校舉行中華漢字聽寫選拔賽,考生甲、乙進(jìn)入考察.要求每位考生從6道備選題中一次性隨機(jī)抽取3題進(jìn)行獨(dú)立聽寫.規(guī)定:至少正確完成其中2題的才可通過考察.已知6道備選題中考生甲有4題能正確完成,2題不能完成;考生乙每題正確完成的概率都是
2
3
,且每題正確完成與否互不影響.求:
(1)設(shè)考生甲、乙正確完成題數(shù)分別X,Y,分別求出隨機(jī)變量X,Y的分布列及期望;
(2)分析哪個(gè)考生通過考察的概率較大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

高二某班50名學(xué)生在一次百米測試中,成績?nèi)慷冀橛?3秒到18秒之間,將測試結(jié)果按如下方式分成五組,第一組[13,14),第二組[14,15)…第五組[17,18],如圖是按上述分組方法得到的頻率分布直方圖.
(1)若成績大于等于14秒且小于16秒規(guī)定為良好,求該班在這次百米測試中成績?yōu)榱己玫娜藬?shù).
(2)請根據(jù)頻率分布直方圖,估計(jì)樣本數(shù)據(jù)的眾數(shù)和中位數(shù)(精確到0.01).
(3)設(shè)m,n表示該班兩個(gè)學(xué)生的百米測試成績,已知m,n∈[13,14)∪[17,18],求事件“|m-n|>2”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一段長為20米的籬笆圍成一個(gè)一邊靠墻的矩形菜園,墻長18米.如圖,設(shè)菜園與墻平行的邊長為x米,另一邊長為y米.
(1)求x與y滿足的關(guān)系式;
(2)求菜園面積S的最大值及此時(shí)x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

兩臺車床加工同一種機(jī)械零件如下表:
合格品 次品 總計(jì)
第一臺車床加工的零件數(shù) 35 5 40
第二臺車床加工的零件數(shù) 50 10 60
總計(jì) 85 15 100
從這100個(gè)零件中任取一個(gè)零件,求:
(1)取得合格品的概率;
(2)取得零件是第一臺車床加工的合格品的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,多面體ABCDEFG中,四邊形ABCD,CDEF都是邊長為2的正方形,DE⊥平面ABCD,AG⊥平面ABCD,且AG=1.
(Ⅰ)若P是BC的中點(diǎn),證明AP∥平面BFG;
(Ⅱ)求四面體ABEG的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

假定下述數(shù)據(jù)是甲、乙兩個(gè)供貨商的交貨天數(shù):
甲:10 9 10 10 11 11 9 11 10 10
乙:8 10 14 7 10 11 10 8 15 12
估計(jì)兩個(gè)供貨商的交貨情況,并問哪個(gè)供貨商交貨時(shí)間短一些,哪個(gè)供貨商交貨時(shí)間較具一致性與可靠性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x2
1+x2

(Ⅰ)分別求f(2)+f(
1
2
),f(3)+f(
1
3
),f(4)+f(
1
4
) 的值;
(Ⅱ)歸納猜想一般性結(jié)論,并給出證明;
(Ⅲ)求值:2f(2)+2f(3)+…+2f(2014)+f(
1
2
)+f(
1
3
)+…+f(
1
2014
)+
1
22
f(2)+
1
32
f(3)+…+
1
20142
f(2014).

查看答案和解析>>

同步練習(xí)冊答案