分析 (1)對an+1=$\frac{1}{2}$an+$\frac{1}{3}$進(jìn)行變形處理得到:an+1-$\frac{2}{3}$=$\frac{1}{2}$an-$\frac{1}{3}$=$\frac{1}{2}$(an-$\frac{2}{3}$),根據(jù)等比數(shù)列的性質(zhì)證得結(jié)論;
(2)根據(jù){an-$\frac{2}{3}$}是以$\frac{5}{24}$為首項,$\frac{1}{2}$為公比的等比數(shù)列來推知數(shù)列{an}的通項公式.
解答 (1)證明:由已知得:an+1-$\frac{2}{3}$=$\frac{1}{2}$an-$\frac{1}{3}$=$\frac{1}{2}$(an-$\frac{2}{3}$),
因為a1=$\frac{7}{8}$,
所以a1-$\frac{2}{3}$=$\frac{5}{24}$,
所以{an-$\frac{2}{3}$}是以$\frac{5}{24}$為首項,$\frac{1}{2}$為公比的等比數(shù)列;
(2)解:由(1)知,{an-$\frac{2}{3}$}是以$\frac{5}{24}$為首項,$\frac{1}{2}$為公比的等比數(shù)列,
所以an-$\frac{2}{3}$=$\frac{5}{24}$•($\frac{1}{2}$)n-1,
所以an=$\frac{5}{24}$•($\frac{1}{2}$)n-1+$\frac{2}{3}$.
點評 本題考查數(shù)列遞推式,考查構(gòu)造法證明等比數(shù)列,考查數(shù)列的通項,解題的關(guān)鍵是構(gòu)造法證明等比數(shù)列.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2$\sqrt{3}$ | B. | 12 | C. | 2$\sqrt{3}$+12 | D. | 2$\sqrt{3}$+6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com