【題目】已知數(shù)列{an}的前n項和為Sn , 且Sn= +
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足bn=an+2﹣an+ ,且數(shù)列{bn}的前n項和為Tn , 求證:Tn<2n+

【答案】
(1)解:當n≥2時,

an=Sn﹣Sn1

= +

=n+1,

又n=1時,

a1=S1=2適合an=n+1,

∴an=n+1


(2)證明:由(1)知:

bn=n+3﹣(n+1)+

=2+ ×( ),

∴Tn=b1+b2+b3+…+bn

=2n+ ×( + +…+

=2n+ ×( +

<2n+


【解析】(1)根據(jù)數(shù)列的通項an和Sn的關(guān)系,即可求解數(shù)列{an}的通項公式;(2)由bn=2+ ),即可利用裂項相消求解數(shù)列的和,得以證明.
【考點精析】認真審題,首先需要了解數(shù)列的前n項和(數(shù)列{an}的前n項和sn與通項an的關(guān)系),還要掌握數(shù)列的通項公式(如果數(shù)列an的第n項與n之間的關(guān)系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項公式)的相關(guān)知識才是答題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}滿足an+1+an=4n﹣3,n∈N*
(1)若數(shù)列{an}是等差數(shù)列,求a1的值;
(2)當a1=﹣3時,求數(shù)列{an}的前n項和Sn;
(3)若對任意的n∈N* , 都有 ≥5成立,求a1的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】極坐標系的極點為直角坐標系的原點,極軸為x軸的正半軸,兩種坐標系中的長度單位相同,已知曲線C的極坐標方程為ρ=2(cosθ+sinθ).
(1)求C的直角坐標方程;
(2)直線l: 為參數(shù))與曲線C交于A,B兩點,與y軸交于E,求|EA|+|EB|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】【2017重慶二診】“微信運動”已成為當下熱門的健身方式,小王的微信朋友圈內(nèi)也有大量好友參與了“微信運動”,他隨機選取了其中的40人(男、女各20人),記錄了他們某一天的走路步數(shù),并將數(shù)據(jù)整理如下:

(1)已知某人一天的走路步數(shù)超過8000步被系統(tǒng)評定“積極型”,否則為“懈怠型”,根據(jù)題意完成下面的列聯(lián)表,并據(jù)此判斷能否有95%以上的把握認為“評定類型”與“性別”有關(guān)?

附: ,

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

(2)若小王以這40位好友該日走路步數(shù)的頻率分布來估計其所有微信好友每日走路步數(shù)的概率分布,現(xiàn)從小王的所有微信好友中任選2人,其中每日走路不超過5000步的有人,超過10000步的有人,設(shè),求的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x|x﹣a|,a∈R,g(x)=x2﹣1.
(1)當a=1時,解不等式f(x)≥g(x);
(2)記函數(shù)f(x)在區(qū)間[0,2]上的最大值為F(a),求F(a)的表達式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】雙曲線 =1(a>0,b>0)的左右焦點分別為F1 , F2漸近線分別為l1 , l2 , 位于第一象限的點P在l1上,若l2⊥PF1 , l2∥PF2 , 則雙曲線的離心率是( )
A.
B.
C.2
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,梯形中, ,矩形所在的平面與平面垂直,且

(Ⅰ)求證:平面平面;

(Ⅱ)若為線段上一點,平面與平面所成的銳二面角為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列結(jié)論中正確的個數(shù)有( )
(1)數(shù)列{an},{bn}都是等差數(shù)列,則數(shù)列{an+bn}也一定是等差數(shù)列;
(2)數(shù)列{an},{bn}都是等比數(shù)列,則數(shù)列{an+bn}也一定是等比數(shù)列;
(3)等差數(shù)列{an}的首項為a1 , 公差為d,取出數(shù)列中的所有奇數(shù)項,組成一個新的數(shù)列,一定還是等差數(shù)列;
(4) G為a,b的等比中項G2=ab.
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】本小題滿分為14已知定義域為R的函數(shù)是奇函數(shù)

1求a,b的值;

2若對任意的tR,不等式ft2-2t+f2t2-k<0恒成立,求k的取值范圍

查看答案和解析>>

同步練習冊答案