任意畫(huà)一個(gè)正方形,再將這個(gè)正方形各邊的中點(diǎn)相連得到第二個(gè)正方形,依此類(lèi)推,這樣一共畫(huà)了3個(gè)正方形,如圖所示.若向圖形中隨機(jī)投一點(diǎn),則所投點(diǎn)落在第三個(gè)正方形的概率是( 。
A、
2
2
B、
1
4
C、
1
8
D、
1
16
考點(diǎn):幾何概型
專(zhuān)題:概率與統(tǒng)計(jì)
分析:結(jié)合圖形發(fā)現(xiàn):每一個(gè)最小正方形的面積都是前邊正方形的面積的
1
2
.根據(jù)幾何概率的求法:所投點(diǎn)落在第三個(gè)正方形的概率就是陰影區(qū)域的面積與總面積的比值.
解答: 解:觀察圖形發(fā)現(xiàn):每一個(gè)最小正方形的面積都是前邊正方形的面積的
1
2
,
則第三個(gè)正方形的面積為第一個(gè)三角形面積的
1
4
,
故所投點(diǎn)落在第三個(gè)正方形的概率為P=
1
4
,
故選:B.
點(diǎn)評(píng):本題考查幾何概率的求法:首先根據(jù)題意將代數(shù)關(guān)系用面積表示出來(lái),一般用陰影區(qū)域表示所求事件(A);然后計(jì)算陰影區(qū)域的面積在總面積中占的比例,這個(gè)比例即事件(A)發(fā)生的概率.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)、g(x)都是定義在R上的函數(shù),g(x)≠0,f′(x)g(x)<f(x)g′(x),f(x)=axg(x),
f(1)
g(1)
+
f(-1)
g(-1)
=
5
2
,則關(guān)于x的方程abx2+
2
x+
5
2
=0(b∈(0,1))有兩個(gè)不同實(shí)根的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sin(ωx+
π
4
)(ω>0)圖象的相鄰兩條對(duì)稱(chēng)軸之間的距離等于
π
2
,則f(
π
8
)
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)函數(shù)y=sin(3x+
π
3
)cos(x-
π
6
)+cos(3x+
π
3
)sin(x-
π
6
)的圖象的一條對(duì)稱(chēng)軸的方程是(  )
A、x=-
π
24
B、x=-
π
12
C、x=
π
12
D、x=
π
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

執(zhí)行如圖所示的程序框圖,若輸入值x∈[-2,2],則輸出值y的取值范圍是( 。
A、[-2,1]
B、[-2,2]
C、[-1,4]
D、[-4,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列四個(gè)命題中正確的命題序號(hào)是(  )
①向量
a
,
b
共線的充分必要條件是存在唯一實(shí)數(shù)λ,使
a
b
成立.
②函數(shù)y=f(x-1)與y=f(1-x)的圖象關(guān)于直線x=1對(duì)稱(chēng).
③ysinθ-cosθ=2y(θ∈[0,π])成立的充分必要條件是|2y|≤
1+y2

④已知U為全集,則x∉A∩B的充分條件是x∈(∁UA)∩(∁UB).
A、②④B、①②C、①③D、③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列選項(xiàng)一定正確的是( 。
A、若a>b,則ac>bc
B、若
a
b
,則a>b
C、若a2>b2,則a>b
D、若
1
a
1
b
,則a>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中,a1=1,對(duì)任意的k∈N*,a2k-1、a2k、a2k+1成等比數(shù)列,公比為qk;a2k、a2k+1、a2k+2成等差數(shù)列,公差為dk,且d1=2.
(1)寫(xiě)出數(shù)列{an}的前四項(xiàng);
(2)設(shè)bk=
1
qk-1
,求數(shù)列{bk}的通項(xiàng)公式;
(3)求數(shù)列{dk}的前k項(xiàng)和Dk

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若實(shí)數(shù)x,y滿(mǎn)足不等式組
3x-y≤3
x+y≥1
x-y≥-1
,則z=2x+3y的最大值是( 。
A、13B、12C、11D、10

查看答案和解析>>

同步練習(xí)冊(cè)答案