【題目】如圖,在四棱錐中,,,,,的中點.

(1)求證:平面;

(2)求三棱錐的體積.

【答案】(1)詳見解析;(2) .

【解析】

試題(1)中點連結. ,推導出四邊形 是平行四邊形,從而由此能證明平面
(2)到面的距離等于到面的距離的一半,且,從而三棱錐的高是2,由此能求出三棱錐的體積.

試題解析:(1)如圖,取PB中點M,連結AMMN.

MNBCP的中位線,∴MNBC,且MN=BC.

依題意得,ADBC,則有ADMN

四邊形AMND是平行四邊形,∴NDAM

NDPABAMPAB,

NDPAB

(2)∵NPC的中點,

N到面ABCD的距離等于P到面ABCD的距離的一半,且PAABCD,PA=4,

三棱錐NACD的高是2.

在等腰ABC,AC=AB=3,BC=4,BC邊上的高為.

BCAD,∴CAD的距離為,

SADC=.

三棱錐NACD的體積是.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某大城市一家餐飲企業(yè)為了了解外賣情況,統(tǒng)計了某個送外賣小哥某天從9:00到21:00這個時間段送的50單外賣.以2小時為一時間段將時間分成六段,各時間段內外賣小哥平均每單的收入情況如下表,各時間段內送外賣的單數(shù)的頻率分布直方圖如下圖.

時間區(qū)間

每單收入(元)

6

5.5

6

6.4

5.5

6.5

(Ⅰ)求頻率分布直方圖中的值,并求這個外賣小哥送這50單獲得的收入;

(Ⅱ)在這個外賣小哥送出的50單外賣中男性訂了25單,且男性訂的外賣中有20單帶飲品,女性訂的外賣中有10單帶飲品,請完成下面的列聯(lián)表,并回答是否有的把握認為“帶飲品和男女性別有關”?

帶飲品

不帶飲品

總計

總計

附:

0.050

0.010

0.005

0.001

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)若上是減函數(shù),求實數(shù)的最大值;

2)若,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平行四邊形中,,過點作的垂線,交的延長線于點.連結,交于點,如圖1,將沿折起,使得點到達點的位置,如圖2.

(1)證明:平面平面;

(2)若的中點,的中點,且平面平面,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,D為正三棱柱ABCA1B1C1的棱AC的中點.

1)證明:AB1∥平面BC1D

2)若二面角CBC1D的大小為45°,求直線AB與平面BB1C1C夾角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,點P是菱形ABCD所在平面外一點,且平面ABCD,,.

(1)求證:平面平面PCE

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,以為極點,軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程為;直線的參數(shù)方程為為參數(shù)),直線與曲線分別交于,兩點.

(1)寫出曲線的直角坐標方程和直線的普通方程;

(2)若點的極坐標為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】奇函數(shù)fx)在R上存在導數(shù),當x0時,fx),則使得(x21fx)<0成立的x的取值范圍為(

A.(﹣10)∪(0,1B.(﹣,﹣1)∪(0,1

C.(﹣1,0)∪(1,+∞D.(﹣,﹣1)∪(1,+∞

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市旅游管理部門為提升該市26個旅游景點的服務質量,對該市26個旅游景點的交通、安全、環(huán)保、衛(wèi)生、管理五項指標進行評分.每項評分最低分0分,最高分100分.每個景點總分為這五項得分之和,根據(jù)考核評分結果,繪制交通得分與安全得分散點圖、交通得分與景點總分散點圖如圖

請根據(jù)圖中所提供的信息,完成下列問題:

1)若從交通得分排名前5名的景點中任取1個,求其安全得分大于90分的概率;

2)若從景點總分排名前6名的景點中任取3個,記安全得分不大于90分的景點個數(shù)為ξ,求隨機變量ξ的分布列和數(shù)學期望;

3)記該市26個景點的交通平均得分為,安全平均得分為,寫出的大小關系?(只寫出結果)

查看答案和解析>>

同步練習冊答案