設(shè){an}是公比為q的等比數(shù)列,推導(dǎo){an}的前n項和公式.
考點:等比數(shù)列的前n項和
專題:等差數(shù)列與等比數(shù)列
分析:利用錯位相減法求解.
解答: 解:∵an=a1qn-1
∴Sn=a1+a1q+a1q2+…+a1qn-1,①
qSn=a1q+a1q2+a1q3+…+a1qn,②
①-②得:(1-q)Sn=a1-a1qn
當q=1時,Sn=na1,
當q≠1時,Sn=
a1(1-qn)
1-q

Sn=
na1,q=1
a1(1-qn)
1-q
,q≠1
點評:本題考查等比數(shù)列的前n項和公式的推導(dǎo),是基礎(chǔ)題,解題時要注意錯位相減法的合理運用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

如圖,在三棱錐P-ABC中,PA=PB=PC=AC=4,AB=BC=2
2

(Ⅰ)求證:平面ABC⊥平面APC;
(Ⅱ)求直線PA與平面PBC所成角的正弦值;
(Ⅲ)若動點M在底面三角形ABC上,二面角M-PA-C的大小為
π
6
,求BM的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
2
cos(
x
2
+
π
4
)+1
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)若x∈[0,2π],求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知fn(x)=(1+x)n,(x≠0且x≠-1,n∈N*
(1)設(shè)g(x)=f3(x)+f4(x)+…+f10(x),求g(x)中含x3的項的系數(shù).
(2)若fn(x)=a0+a1(x-2)+a2(x-2)2+…+an(x-2)n,設(shè)Sn=
n
i=1
ai
,試比較Sn與(n-2)•3n+(n+1)2的大小,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求下列函數(shù)的單調(diào)區(qū)間:
(1)y=|x-1|+|2x+4|-4;
(2)y=-x2+2|x|+3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知Sn是數(shù)列{an}的前n項和,an>0,且Sn=
an2+an
2
(n∈N*
(Ⅰ)求證數(shù)列{an}是等差數(shù)列;
(Ⅱ)設(shè)數(shù)列{bn}滿足b1=2,bn+1=2bn+an,求證:數(shù)列{bn+n+1}是等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

橢圓
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
3
2
,焦點到橢圓上點的最短距離為2-
3
,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知復(fù)數(shù)z=i(3-i)(i是虛數(shù)單位),則復(fù)數(shù)z的虛部為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知關(guān)于x的方程x2-(6+i)x+9+ai=0(a∈R)有實數(shù)根b,若復(fù)數(shù)z滿足|
.
z
-a-bi|=2|z|
,則|z|有最小值為
 

查看答案和解析>>

同步練習冊答案