橢圓
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
3
2
,焦點到橢圓上點的最短距離為2-
3
,求橢圓的方程.
考點:橢圓的簡單性質
專題:計算題,圓錐曲線的定義、性質與方程
分析:根據(jù)題意建立關于a、c的方程組,解出a=2且c=
3
,從而得到b2=a2-c2=1,可得橢圓的方程
解答: 解:∵e=
3
2
,焦點到橢圓上點的最短距離為2-
3

c
a
=
3
2
,a-c=2-
3
,
解得a=2,c=
3
,
∴b2=a2-c2=1,
由此可得橢圓的方程為
x2
4
+y2=1
點評:本題已知橢圓滿足的條件,求橢圓的方程,著重考查了橢圓的定義與標準方程等知識,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an}滿足2n2-(λ+an)n+
3
2
an=0(λ∈R,n∈N*);等比數(shù)列{bn}的首項為b1=2,公比為q(q為正整數(shù)),且滿足3b3是8b1與b5的等差中項.
(1)求數(shù)列{bn}的通項公式;
(2)試確定λ的值,使得數(shù)列{an}為等差數(shù)列;
(3)當{an}為等差數(shù)列時,對每個正整數(shù)k,在bk與bk+1之間插入ak個2,得到一個新數(shù)列{cn}.設Tn是數(shù)列{cn} 的前n項和,試求滿足Tm=2cm+1的所有正整數(shù)m.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1+lnx
x

(1)若函數(shù)f(x)在區(qū)間(a,a+
1
3
)(a>0)上存在極值點,求實數(shù)a的取值范圍;
(2)當x≥1時,不等式f(x)≥
k
x+1
恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設{an}是公比為q的等比數(shù)列,推導{an}的前n項和公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知圓內接四邊形ABCD中,AB=2,BC=6,AD=CD=4,求:
(1)四邊形ABCD的面積;
(2)圓O的直徑.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在等差數(shù)列{an}中,已知a6+a9+a13+a16=20,則S21=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設Sn,Tn分別為等差數(shù)列{an}與{bn}的前n項和,且
an
bn
=
4n+2
2n-5
,則
S19
T19
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線
x2
a2
-y2
=1的一個焦點坐標為(-
3
,0),則其漸近線方程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若復數(shù)(2+i)x+3-i是純虛數(shù),則實數(shù)x的值為
 

查看答案和解析>>

同步練習冊答案