【題目】已知函數(shù)f(x)=Asin(ωx+φ)+1(A>0,ω>0,|φ|< ),圖象上有一個(gè)最低點(diǎn)是P(﹣ ,﹣1),對(duì)于f(x1)=1,f(x2)=3,|x1﹣x2|的最小值為 . (Ⅰ)若f(α+ )= ,且α為第三象限的角,求sinα+cosα的值;
(Ⅱ)討論y=f(x)+m在區(qū)間[0, ]上零點(diǎn)的情況.

【答案】解:(Ⅰ)由已知:﹣A+1=﹣1, ∴A=2, ,解得T=π,∴ω=2;
又且過點(diǎn) ,

;
∴f(x)= ;
,得 ,
∵α為第三象限的角,
∴sinα+cosα= ;
(Ⅱ)∵ ,∴ ,

;
∴①當(dāng)﹣2<m≤0或m=﹣3時(shí),函數(shù)y=f(x)+m在 上只有一個(gè)零點(diǎn);
②當(dāng)﹣3<m≤﹣2時(shí),函數(shù)y=f(x)+m在 上有兩個(gè)零點(diǎn);
③當(dāng)m<﹣3或m>0時(shí),函數(shù)y=f(x)+m在 上沒有零點(diǎn)
【解析】(Ⅰ)根據(jù)題意,求出A、ω與φ的值,寫出f(x)的解析式,再計(jì)算sinα+cosα的值;(Ⅱ)根據(jù)x的取值范圍,計(jì)算f(x)的值域,再求函數(shù)y=f(x)+m在 上的零點(diǎn)問題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x﹣1+ (a∈R).
(1)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線平行于x軸,求a的值;
(2)求函數(shù)f(x)的極值;
(3)當(dāng)a=1時(shí),若直線l:y=kx﹣1與曲線y=f(x)沒有公共點(diǎn),求k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,是等邊三角形,,,.

(Ⅰ)求證:

(Ⅱ)若平面 平面,,求二面角的余弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某算法的算法框圖如圖所示,若將輸出的(x,y)值依次記為(x1 , y1),(x2 , y2),…,(xn , yn),…,則程序結(jié)束時(shí),共輸出(x,y)的組數(shù)為(
A.1006
B.1007
C.1008
D.1009

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】小明跟父母、爺爺奶奶一同參加《中國(guó)詩詞大會(huì)》的現(xiàn)場(chǎng)錄制,5人坐成一排.若小明的父母至少有一人與他相鄰,則不同坐法的總數(shù)為

A. 60 B. 72 C. 84 D. 96

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C的圓心在直線上,且與直線相切于點(diǎn)

1)求圓C的方程;

2)是否存在過點(diǎn)的直線與圓C交于兩點(diǎn),且的面積為O為坐標(biāo)原點(diǎn)),若存在,求出直線的方程,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一只藥用昆蟲的產(chǎn)卵數(shù)與一定范圍內(nèi)與溫度有關(guān), 現(xiàn)收集了該種藥用昆蟲的6組觀測(cè)數(shù)據(jù)如下表:

溫度/℃

21

23

24

27

29

32

產(chǎn)卵數(shù)/個(gè)

6

11

20

27

57

77

(1)若用線性回歸模型,求關(guān)于的回歸方程=x+(精確到0.1);

(2)若用非線性回歸模型求關(guān)的回歸方程為 且相關(guān)指數(shù)

( i )試與 (1)中的線性回歸模型相比,用 說明哪種模型的擬合效果更好.

( ii )用擬合效果好的模型預(yù)測(cè)溫度為時(shí)該種藥用昆蟲的產(chǎn)卵數(shù)(結(jié)果取整數(shù)).

附:一組數(shù)據(jù)(x1,y1), (x2,y2), ...,(xn,yn), 其回歸直線=x+的斜率和截距的最小二乘估計(jì)為,,相關(guān)指數(shù)

。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)用定義證明函數(shù)上是增函數(shù);

(2)探究是否存在實(shí)數(shù),使得函數(shù)為奇函數(shù)?若存在,求出的值;若不存在,請(qǐng)說明理由;

3)在(2)的條件下,解不等式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù), ).

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若函數(shù)處取得極大值,求正實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案