若函數(shù)f(x)=x3-ax-1在實(shí)數(shù)集R上單調(diào)遞增,則實(shí)數(shù)a的取值范圍為
 
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:求函數(shù)f(x)的導(dǎo)數(shù),然后根據(jù)f′(x)≥0在R上恒成立,即可得到答案.
解答: 解:∵f(x)=x3+ax∴f′(x)=3x2+a,
∵f(x)在R上單調(diào)遞增,
∴f′(x)=3x2+a≥0在R上恒成立,
即-a≤3x2在R上恒成立,
-a小于等于3x2的最小值即可,
∴-a≤0.解得a≥0.
故答案為:a≥0.
點(diǎn)評(píng):本題主要考查函數(shù)的單調(diào)性與其導(dǎo)函數(shù)的正負(fù)之間的關(guān)系,即當(dāng)導(dǎo)函數(shù)大于0時(shí)原函數(shù)單調(diào)遞增,當(dāng)導(dǎo)函數(shù)小于0時(shí)原函數(shù)單調(diào)遞減.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)y=3-
x-1
5-2x
的值域?yàn)?div id="gyrfs2o" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(n)=k(其中n∈N*)k是π的小數(shù)點(diǎn)后的第n位數(shù)字,π=3.141 592 653 5…,則{f…f[f(10)]}=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=x3-
1
2
x2-2x+5,求函數(shù)f(x)的遞增區(qū)間
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=
x+2 (x≤-1)
x2(-1<x<2)
2x (x≥2)
,若f(x)=3,則x=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,D是△ABC的邊AB上的中點(diǎn),記
BC
=
e1
,
BA
=
e2
,則向量
CD
=(  )
A、-
e1
-
1
2
e2
B、-
e1
+
1
2
e2
C、
e1
-
1
2
e2
D、
e1
+
1
2
e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2
3
sinxcosx-cos2x(x∈R),則將f(x)的圖象向右平移
π
3
個(gè)單位所得曲線的一條對(duì)稱軸的方程是(  )
A、x=
π
6
B、x=
π
4
C、x=
π
2
D、x=π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

圓(x+1)2+y2=3關(guān)于原點(diǎn)(0,0)對(duì)稱的圓的方程為( 。
A、(x-1)2+y2=3
B、x2+(y-1)2=3
C、(x+1)2+(y+1)2=3
D、x2+(y+1)2=3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在下列四個(gè)正方體中,能得出異面直線AB⊥CD的是( 。
A、
B、
C、
D、

查看答案和解析>>

同步練習(xí)冊(cè)答案