設(shè)f(x)=
ex
1+ax2
,其中a為正實(shí)數(shù).
(Ⅰ)當(dāng)a=
4
3
時(shí),求f(x)的單調(diào)區(qū)間;
(Ⅱ)若f(x)為R上的單調(diào)函數(shù),求a的取值范圍.
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:(Ⅰ)先求出函數(shù)的導(dǎo)數(shù),解不等式求出單調(diào)區(qū)間即可,(Ⅱ)引進(jìn)新函數(shù)g(x),結(jié)合二次函數(shù)的圖象及性質(zhì)從而求出a的范圍.
解答: 解:f′(x)=
ex(ax2-2ax+1)
(1+ax2)2
,
(Ⅰ)a=
4
3
時(shí),f′(x)=
(
4
3
x
2
-
8
3
x+1)•ex
(1+
4
3
x
2
)
2
,
令f′(x)>0,解得:x>
3
2
,x<
1
2

令f′(x)<0,解得:
1
2
<x<
3
2
,
∴f(x)在(-∞,
1
2
),(
3
2
,+∞)遞增,在(
1
2
,
3
2
)遞減,
(Ⅱ)∵f′(x)=
ex(ax2-2ax+1)
(1+ax2)2
,
令g(x)=ax2-2ax+1,
若f(x)為R上的單調(diào)函數(shù),
需g(x)>0,或g(x)<0,
①a>0時(shí),
需△=4a(a-1)<0,
解得:0<a<1,
②a<0時(shí),
需△=4a(a-1)<0,無(wú)解,
∴a的范圍是(0,1).
點(diǎn)評(píng):本題考察了函數(shù)的單調(diào)性,導(dǎo)數(shù)的應(yīng)用,滲透了數(shù)形結(jié)合思想,是一道綜合題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

曲線y=ln
1
x
上的點(diǎn)到直線x+y+3=0的最短距離為( 。
A、
2
B、
2
2
C、2
2
D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

“a=1”是“復(fù)數(shù)a2-1+(a+1)i(a∈R,i為虛數(shù)單位)是純虛數(shù)”的( 。
A、充分不必要
B、必要不充分
C、充要條件
D、既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2+2alnx.
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)g(x)=
2
x
+f(x)在[1,2]上是減函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
x2+(p+1)x+p
2x+p
(p>0)和g(x)=18
4
5
-2x-
81
2x+1
的定義域都是[2,4].
(1)若p=1,求f(x)的最小值;
(2)若f(x)<2在其定義域上有解,求p的取值范圍;
(3)若f(2)+g(2)=
2
5
,求證f(x)>g(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=
4+x2
3
+
12-x
5
,求f′(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=(x-2m)(nx+2)(m>0,n>0)為偶函數(shù).
(1)若k≤f(2)+6m恒成立,求k的取值范圍;
(2)當(dāng)m=1時(shí),若函數(shù)g(x)=(a-2)lnx+f(x)在區(qū)間(2,3)內(nèi)不是單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知△ASD中,SD=3,CD=
5
,cos∠SDC=-
1
5
5
,SA=2AD,AB⊥SD交SC于B,M為SB上點(diǎn),且SM=2MB,將△SAB沿AB折起,使平面SAB⊥平面ABCD

(Ⅰ)求證:AM∥平面SCD;
(Ⅱ)求三棱錐S-CDM的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)y=
2x2-2x+1
x2
(x>2)的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案