在△ABC中,角A、B、C的對邊分別為a、b、c,a=1,b=
3
,A=30°,解此三角形.
考點:正弦定理
專題:解三角形
分析:利用正弦定理列出關(guān)系式,將sinA,a,b的值代入求出sinB的值,確定出B的度數(shù),進而求出C的度數(shù),得到c的值.
解答: 解:∵a=1,b=
3
,A=30°,
∴由正弦定理
a
sinA
=
b
sinB
,得:sinB=
bsinA
a
=
3
×
1
2
1
=
3
2
,
∵0<B<180°,∴B=60°或120°,
當(dāng)B=60°時,C=90°,由勾股定理得:c=
a2+b2
=2;
當(dāng)B=120°時,C=30°,此時A=C,即a=c=1,
∴B=60°,C=90°,c=2或B=120°,C=30°,c=1.
點評:此題考查了正弦定理,以及特殊角的三角函數(shù)值,熟練掌握正弦定理是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

過點P(7,1)作圓x2+y2=25的切線,求切線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓G:
x2
a2
+
y2
b2
=1(a>b>0),過A(1,
6
3
)和點B(0,-1).
(1)求橢圓G的方程;
(2)設(shè)過點P(0,
3
2
)的直線l與橢圓G交于M,N兩點,且|BM|=|BN|,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,A,B是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右頂點,且|AB|=4,橢圓C的離心率為
1
2
,直線l:x=4.
(1)求橢圓方程;
(2)設(shè)M是橢圓C上異于A,B的一點,直線AM交l于點P,以MP為直徑的圓記為E.
①若M恰好是橢圓C的上頂點,求E截直線PB所得的弦長;
②設(shè)E與直線MB交于點Q,試證明:直線PQ與x軸的交點R為定點,并求該定點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知α、β是銳角,sinα=
13
14
,sinβ=
11
14

(1)求sin(α-β)的值
(2)求α+β的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,三個內(nèi)角A,B,C對應(yīng)三邊長分別為a,b,c.若C=3B,
c
b
的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,⊙O的割線PAB交⊙O于A、B兩點,割線PCD經(jīng)過圓心O,PE是⊙O的切線.已知PA=6,AB=7
1
3
,PO=12,求PE的長,及⊙O的半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

同時滿足以下4個條件的集合記作Ak:(1)所有元素都是正整數(shù);(2)最小元素為1;(3)最大元素為2014;(4)各個元素可以從小到大排成一個公差為k(k∈N*)的等差數(shù)列.那么A33∪A61中元素的個數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖1,一個正三棱柱容器,底面邊長為a,高為2a,內(nèi)裝水若干,將容器放倒,把一個側(cè)面作為底面,如圖2,這時水面恰好為中截面,則圖1容器中水面的高度是
 

查看答案和解析>>

同步練習(xí)冊答案