【題目】已知各項(xiàng)均為正數(shù)的數(shù)列的前項(xiàng)和為且滿足:
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)求的值;
(3)是否存在大于2的正整數(shù)使得?若存在,求出所有符合條件的若不存在,請(qǐng)說明理由.
【答案】(1);(2);(3)存在,或
【解析】
(1)利用,求得數(shù)列的通項(xiàng)公式.
(2)利用裂項(xiàng)求和法求得,進(jìn)而求得的值.
(3)首先假設(shè)存在符合題意的,根據(jù)已知條件列方程組,解方程組求得的值.
(1)由得,兩式相減并化簡(jiǎn)得,由于,所以,所以數(shù)列是首項(xiàng)為,公差為的等差數(shù)列,所以.
(2)由(1)得,所以
,所以.
(3)存在大于2的正整數(shù)使得.理由如下:
假設(shè)存在大于2的正整數(shù)使得,由(1)得
.由于正整數(shù)均大于,故,且和的奇偶性相同.由得
或,解得或.因此存在大于2的正整數(shù)使得.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列的各項(xiàng)都是正數(shù),且對(duì)于任意都有,記為數(shù)列的前項(xiàng)和.
(1)計(jì)算的值;
(2)求數(shù)列的通項(xiàng)公式;
(3)設(shè),若為單調(diào)遞增數(shù)列,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平面內(nèi)兩個(gè)定點(diǎn)和點(diǎn),是動(dòng)點(diǎn),且直線,的斜率乘積為常數(shù),設(shè)點(diǎn)的軌跡為.
① 存在常數(shù),使上所有點(diǎn)到兩點(diǎn)距離之和為定值;
② 存在常數(shù),使上所有點(diǎn)到兩點(diǎn)距離之和為定值;
③ 不存在常數(shù),使上所有點(diǎn)到兩點(diǎn)距離差的絕對(duì)值為定值;
④ 不存在常數(shù),使上所有點(diǎn)到兩點(diǎn)距離差的絕對(duì)值為定值.
其中正確的命題是_______________.(填出所有正確命題的序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)判斷函數(shù)的奇偶性,并說明理由
(2)討論函數(shù)的零點(diǎn)個(gè)數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義:若函數(shù)的圖像經(jīng)過變換后所得的圖像對(duì)應(yīng)的函數(shù)與的值域相同,則稱變換是的同值變換,下面給出了四個(gè)函數(shù)與對(duì)應(yīng)的變換:
①將函數(shù)的圖像關(guān)于軸作對(duì)稱變換;
②將函數(shù)的圖像關(guān)于軸作對(duì)稱變換;
③將函數(shù)的圖像關(guān)于點(diǎn)(-1,1)作對(duì)稱變換;
④將函數(shù)的圖像關(guān)于點(diǎn)(-1,0)作對(duì)稱變換;
其中是的同值變換的有_______.(寫出所有符合題意的序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a,b,c分別為△ABC三個(gè)內(nèi)角A,B,C的對(duì)邊,且acos C+asin C-b-c=0.
(1)求A;
(2)若AD為BC邊上的中線,cos B=,AD=,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知.
(1)試討論函數(shù)的單調(diào)性;
(2)若使得都有恒成立,且,求滿足條件的實(shí)數(shù)的取值集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)為平面直角坐標(biāo)系xOy中的點(diǎn)集,從中的任意一點(diǎn)P作x軸、y軸的垂線,垂足分別為M,N,記點(diǎn)M的橫坐標(biāo)的最大值與最小值之差為x(),點(diǎn)N的縱坐標(biāo)的最大值與最小值之差為y().若是邊長(zhǎng)為1的正方形,給出下列三個(gè)結(jié)論:
①x(Q)的最大值為
②x(Q)+y(Q)的取值范圍是
③x(Q)-y(Q)恒等于0.
其中所有正確結(jié)論的序號(hào)是_________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合,集合,集合.
(1)用列舉法表示集合C;
(2)設(shè)集合C的含n個(gè)元素所有子集為,記有限集合M的所有元素和為,求的值;
(3)已知集合P、Q是集合C的兩個(gè)不同子集,若P不是Q的子集,且Q不是P的子集,求所有不同的有序集合對(duì)的個(gè)數(shù);
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com