【題目】如圖,在平面直角坐標系中,以原點為圓心,單位長度為半徑的圓上有兩點A( , ),B( ). (Ⅰ)求 , 夾角的余弦值;
(Ⅱ)已知C(1,0),記∠AOC=α,∠BOC=β,求tan 的值.

【答案】解:(Ⅰ)在平面直角坐標系中,以原點為圓心,單位長度為半徑的圓上有兩點 A( , ),B( ),
=( ), =( ),| |=| |=1,
, 夾角的余弦值cos∠AOB= = =
(Ⅱ)設∠AOB的平分線OD交單位圓于點D,則∠COD=
從而D(cos ,sin ),∴ =(cos ,sin ),
連接AB,可知OD⊥AB,即 =0.
= =(﹣ , ),
∴(cos ,sin )(﹣ , )=﹣ cos + sin =0,
∴tan =
【解析】(Ⅰ)先求出向量 , 的坐標,再跟它們的夾角的余弦值cos∠AOB= ,計算求得結果.(Ⅱ)設∠AOB的平分線OD交單位圓于點D,則∠COD= ,求得 的坐標,根據(jù) =0,求得tan 的值.
【考點精析】掌握數(shù)量積表示兩個向量的夾角和兩角和與差的正切公式是解答本題的根本,需要知道設、都是非零向量,,的夾角,則;兩角和與差的正切公式:

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù), .

(Ⅰ)若曲線在點處的切線與直線垂直,求函數(shù)的極值;

(Ⅱ)設函數(shù).當時,若區(qū)間上存在,使得,求實數(shù)的取值范圍.(為自然對數(shù)底數(shù))

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱ABC﹣A1B1C1中,側棱AA1⊥底面ABC,AB=AC,D,D1分別是線段BC,B1C1的中點,P是線段AD上異于端點的點.
(1)在平面ABC內(nèi),試作出過點P與平面A1BC平行的直線l,并說明理由;
(2)證明:直線l⊥平面ADD1A1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=
(1)當 時,求函數(shù)f(x)的取值范圍;
(2)將f(x)的圖象向左平移 個單位得到函數(shù)g(x)的圖象,求g(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,銳角△ABC中, = , = ,點M為BC的中點. (Ⅰ)試用 , 表示
(Ⅱ)若| |=5,| |=3,sin∠BAC= ,求中線AM的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個口袋內(nèi)有4個不同的紅球,6個不同的白球,
(1)從中任取4個球,紅球的個數(shù)不比白球少的取法有多少種?
(2)若取一個紅球記2分,取一個白球記1分,從中任取5個球,使總分不少于7分的取法有多少種?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=lnx﹣a2x2+ax(a∈R).
(1)當a=1時,求函數(shù)f(x)最大值;
(2)若函數(shù)f(x)在區(qū)間(1,+∞)上是減函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某媒體為調(diào)查喜愛娛樂節(jié)目是否與觀眾性別有關,隨機抽取了30名男性和30名女性觀眾,抽查結果用等高條形圖表示如圖:

(1)根據(jù)該等高條形圖,完成下列列聯(lián)表,并用獨立性檢驗的方法分析,能否在犯錯誤的概率不超過0.05的前提下認為喜歡娛樂節(jié)目與觀眾性別有關?

(2)從性觀眾中按喜歡節(jié)目與否,用分層抽樣的方法抽取5名做進一步調(diào)查.從這5名中任選2名,求恰有1名喜歡節(jié)目和1名不喜歡節(jié)目的概率.

附:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在三棱錐 中,底面 是邊長為 2 的正三角形,頂點 在底面上的射影為的中心,若的中點,且直線與底面所成角的正切值為,則三棱錐外接球的表面積為( )

A. B. C. D.

查看答案和解析>>

同步練習冊答案