【題目】在平面直角坐標系中,直線的參數方程為(為參數),以原點為極點,軸的非負半軸為極軸且取相同的單位長度建立極坐標系,曲線的極坐標方程為.
(1)求直線的普通方程及曲線的直角坐標方程;
(2)若直線與曲線交于,兩點,求.
科目:高中數學 來源: 題型:
【題目】某印刷廠為了研究單冊書籍的成本(單位:元)與印刷冊數(單位:千冊)之間的關系,在印制某種書籍時進行了統(tǒng)計,相關數據見下表:
印刷冊數(千冊) | |||||
單冊成本(元) |
根據以上數據,技術人員分別借助甲、乙兩種不同的回歸模型,得到兩個回歸方程,方程甲:,方程乙:.
(1)為了評價兩種模型的擬合效果,完成以下任務.
①完成下表(計算結果精確到);
印刷冊數(千冊) | ||||||
單冊成本(元) | ||||||
模型甲 | 估計值 | |||||
殘差 | ||||||
模型乙 | 估計值 | |||||
殘差 |
②分別計算模型甲與模型乙的殘差平方和,并通過比較,判斷哪個模型擬合效果更好.
(2)該書上市之后,受到廣大讀者熱烈歡迎,不久便全部售罄,于是印刷廠決定進行二次印刷,根據市場調查,新需求量為千冊,若印刷廠以每冊元的價格將書籍出售給訂貨商,求印刷廠二次印刷千冊獲得的利潤?(按(1)中擬合效果較好的模型計算印刷單冊書的成本).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了調查我市在校中學生參加體育運動的情況,從中隨機抽取了16名男同學和14 名女同學,調查發(fā)現,男、女同學中分別有12人和6人喜愛運動,其余不喜愛.
(1)根據以上數據完成以下列聯(lián)表:
(2)根據列聯(lián)表的獨立性檢驗,能否在犯錯誤的概率不超過0.010的前提下認為性別與喜愛運動有關?
(3)將以上統(tǒng)計結果中的頻率視作概率,從我市中學生中隨機抽取3人,若其中喜愛運動的人數為,求的分布列和均值.
參考數據:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2019年某開發(fā)區(qū)一家汽車生產企業(yè)計劃引進一批新能源汽車制造設備,通過市場分析,全年需投入固定成本3000萬元,每生產x(百輛),需另投入成本萬元,且,由市場調研知,每輛車售價6萬元,且全年內生產的車輛當年能全部銷售完.
(1)求出2019年的利潤(萬元)關于年產量x(百輛)的函數關系式;(利潤=銷售額成本)
(2)2019年產量為多少(百輛)時,企業(yè)所獲利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設an= sin ,Sn=a1+a2+…+an , 在S1 , S2 , …S100中,正數的個數是( )
A.25
B.50
C.75
D.100
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】傳承傳統(tǒng)文化再掀熱潮,央視科教頻道以詩詞知識競賽為主的《中國詩詞大會》火爆熒屏.將中學組和大學組的參賽選手按成績分為優(yōu)秀、良好、一般三個等級,隨機從中抽取了100名選手進行調查,如圖是根據調查結果繪制的選手等級人數的條形圖.
(1)若將一般等級和良好等級合稱為合格等級,根據已知條件完成列聯(lián)表,并據此資料你是否有的把握認為選手成績“優(yōu)秀”與文化程度有關?
注:,其中.
(2)若江西參賽選手共80人,用頻率估計概率,試估計其中優(yōu)秀等級的選手人數;
(3)如果在優(yōu)秀等級的選手中取4名,在良好等級的選手中取2名,再從這6人中任選3人組成一個比賽團隊,求所選團隊中有2名選手的等級為優(yōu)秀的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(1)求證: .
(2)某同學在一次研究性學習中發(fā)現,以下五個式子的值都等于同一個常數:
sin213°+cos217°-sin13°cos17°;
sin215°+cos215°-sin15°cos15°;
sin218°+cos212°-sin18°cos12°;
sin2(-18°)+cos248°-sin(-18°)cos48°;
sin2(-25°)+cos255°-sin(-25°)cos55°.
①試從上述五個式子中選擇一個,求出這個常數;
②根據①的計算結果,將該同學的發(fā)現推廣為三角恒等式.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com