【題目】如圖甲所示,是梯形的高,,,,先將梯形沿折起如圖乙所示的四棱錐,使得.
(1)在棱上是否存在一點,使得平面?若存在,請求出的值,若不存在,請說明理由;
(2)點是線段上一動點,當直線與所成的角最小時,求二面角的余弦值.
【答案】(1)存在點,使得平面,此時,詳見解析(2)
【解析】
(1)過作交于,作交于,連接,易得平面,平面,從而得到平面平面,所以得到平面,而此時根據(jù)幾何關(guān)系可以得到;(2)以為坐標原點建立空間直角坐標系,,表示出與所成角為的余弦值,并求出最小時的值,從而得到各點坐標,再求出平面和平面的法向量,根據(jù)兩個法向量之間的夾角公式,求得答案.
解:(1)存在點,使得平面,此時,理由如下:
依題,,,,
即,
所以,
因為,平面,平面,
所以平面,
所以,所以,
過作交于,作交于,連接,
因為,,
所以,
所以,
而,所以有
,平面,平面,
所以平面
,平面,平面,
所以平面
平面,,
所以平面平面,
而平面
所以平面.
故存在點,使得平面,此時
(2)以為坐標原點,,,分別為,,軸建立空間直角坐標系.
,,,,
設(shè),
即,所以,
,
設(shè)直線與所成角為
則
令,則,
令,則,,
當時,取最大值,
此時直線與所成的角最小.此時.
所以,又因為,,
所以,,
設(shè)平面法向量分別為
則,即
取得平面的法向量為,
設(shè)平面法向量為
則,即
取得平面法向量為
所以,
由圖可知,二面角為鈍二面角,則其余弦值為.
科目:高中數(shù)學 來源: 題型:
【題目】已知一個口袋有個白球,個黑球,這些球除顏色外全部相同,現(xiàn)將口袋中的球隨機逐個取出,并依次放入編號為,,,的抽屜內(nèi).
(1)求編號為的抽屜內(nèi)放黑球的概率;
(2)口袋中的球放入抽屜后,隨機取出兩個抽屜中的球,求取出的兩個球是一黑一白的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè),,以表示不是的因數(shù)的最小自然數(shù),例如.若,又可作等等.如果,那么叫做的長度.對一切,,用列舉法表示的長度構(gòu)成的集合是______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某單位有員工1000名,平均每人每年創(chuàng)造利潤10萬元.為增加企業(yè)競爭力,決定優(yōu)化產(chǎn)業(yè)結(jié)構(gòu),調(diào)整出名員工從事第三產(chǎn)業(yè),調(diào)整后平均每人每年創(chuàng)造利潤為萬元,剩下的員工平均每人每年創(chuàng)造的利潤可以提高.
(1)若要保證剩余員工創(chuàng)造的年總利潤不低于原來1000名員工創(chuàng)造的年總利潤,則最多調(diào)整出多少名員工從事第三產(chǎn)業(yè)?
(2)若要保證剩余員工創(chuàng)造的年總利潤不低于原來1000名員工創(chuàng)造的年總利潤條件下,若要求調(diào)整出的員工創(chuàng)造出的年總利潤始終不高于剩余員工創(chuàng)造的年總利潤,則的取值范圍是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,底面是正方形,側(cè)面底面,且,設(shè),,分別為,,的中點.
(1)求證:平面平面;
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)命題對任意實數(shù),不等式恒成立;命題方程表示焦點在軸上的雙曲線.
(1)若命題為真命題,求實數(shù)的取值范圍;
(2)若命題:“”為真命題,且“”為假命題,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某樂園按時段收費,收費標準為:每玩一次不超過小時收費10元,超過小時的部分每小時收費元(不足小時的部分按小時計算).現(xiàn)有甲、乙二人參與但都不超過小時,甲、乙二人在每個時段離場是等可能的。為吸引顧客,每個顧客可以參加一次抽獎活動。
(1) 用表示甲乙玩都不超過小時的付費情況,求甲、乙二人付費之和為44元的概率;
(2)抽獎活動的規(guī)則是:顧客通過操作按鍵使電腦自動產(chǎn)生兩個[0,1]之間的均勻隨機數(shù),并按如右所示的程序框圖執(zhí)行.若電腦顯示“中獎”,則該顧客中獎;若電腦顯示“謝謝”,則不中獎,求顧客中獎的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給出下列命題:
①正切函數(shù)圖象的對稱中心是唯一的;
②若函數(shù)的圖像關(guān)于直線對稱,則這樣的函數(shù)是不唯一的;
③若,是第一象限角,且,則;
④若是定義在上的奇函數(shù),它的最小正周期是,則.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com