【題目】小明設計了一款正四棱錐形狀的包裝盒,如圖所示,是邊長為的正方形硬紙片,切去陰影部分所示的四個全等的等腰三角形,再沿虛線折起,使得四個點重合于圖中的點,正好形成一個正四棱錐形狀的包裝盒,設正四棱錐底面正方形的邊長為.

1)試用表示該四棱錐的高度,并指出的取值范圍;

2)若要求側面積不小于,求該四棱錐的高度的最大值,并指出此時該包裝盒的容積.

【答案】1;(2,.

【解析】

1)設正四棱錐側面等腰三角形高為,由正方形,可得,再由組成直角三角形,即可得到關系,進而求出的范圍;

2)利用(1)中關系,求出側面積關于的函數(shù),進一步求出滿足條件的范圍,可求出的最大值,即可求出結論.

1)設正四棱錐側面等腰三角形高為,在正方形中,

,

在四棱錐中,,

,

,

;

2)四棱錐的側面積

,解得

,當時,

,

此時包裝盒的容積為

所以滿足條件的四棱錐的高度的最大值為20,

此時該包裝盒的容積為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】給出以下命題:①x2+ y2 ≠0,則xy不全為零的否命題;②正多邊形都相似的逆命題;③m>0,則x2+x-m=0有實根的逆否命題;其中真命題的序號是____________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)若內單調遞減,求實數(shù)的取值范圍;

(Ⅱ)若函數(shù)有兩個極值點分別為,證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)討論極值點的個數(shù);

(2)若的一個極值點,且,證明: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,橢圓的離心率,且橢圓C的短軸長為.

(1)求橢圓的方程;

(2)設橢圓上的三個動點.

i)若直線過點D,且點是橢圓的上頂點,求面積的最大值;

ii)試探究:是否存在是以為中心的等邊三角形,若存在,請給出證明;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在長方形中,,,點為線段上一動點,現(xiàn)將沿折起,使點在面內的射影在直線上,當點運動到,則點所形成軌跡的長度為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知動點M到定點F1(2,0)F2(2,0)的距離之和為.

1)求動點M的軌跡C的方程;

2)設N(0,2),過點P(1,-2)作直線l,交曲線C于不同于N的兩點AB,直線NA,NB的斜率分別為k1,k2,求k1k2的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中,角A,B,C的對邊分別為a,bc,.

1)求角C;

2)設D為邊AC上一點,ADBD,若BC2,的面積為3,求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左,右焦點分別為,該橢圓的離心率為,以原點為圓心,橢圓的短半軸長為半徑的圓與直線相切.

(I)求橢圓的方程;

(Ⅱ)如圖,若斜率為的直線軸,橢圓順次交于點在橢圓左頂點的左側)且,求證:直線過定點;并求出斜率的取值范圍.

查看答案和解析>>

同步練習冊答案