【題目】某學校需要從甲、乙兩名學生中選一人參加數(shù)學競賽,抽取了近期兩人次數(shù)學考試的成績,統(tǒng)計結(jié)果如下表:

第一次

第二次

第三次

第四次

第五次

甲的成績(分)

乙的成績(分)

(1)若從甲、乙兩人中選出一人參加數(shù)學競賽,你認為選誰合適?請說明理由.

(2)若數(shù)學競賽分初賽和復賽,在初賽中有兩種答題方案:

方案一:每人從道備選題中任意抽出道,若答對,則可參加復賽,否則被淘汰.

方案二:每人從道備選題中任意抽出道,若至少答對其中道,則可參加復賽,否則被潤汰.

已知學生甲、乙都只會道備選題中的道,那么你推薦的選手選擇哪種答題方條進人復賽的可能性更大?并說明理由.

【答案】(1)見解析;(2)選方案二

【解析】

1)可以用兩種方法決定參賽選手,方法一:先求平均數(shù)再求方差,根據(jù)成績的穩(wěn)定性決定選手;方法二:從統(tǒng)計的角度看,看甲乙兩個選手獲得以上(含分)的概率的大小決定選手;(2)計算出兩種方案學生乙可參加復賽的概率,比較兩個概率的大小即得解.

(1)解法一:甲的平均成績?yōu)?/span>;

乙的平均成績?yōu)?/span>,

甲的成績方差;

乙的成績方差為;

由于,乙的成績較穩(wěn)定,派乙參賽比較合適,故選乙合適.

解法二、派甲參賽比較合適,理由如下:

從統(tǒng)計的角度看,甲獲得以上(含分)的概率,乙獲得分以上(含分)的概率

因為故派甲參賽比較合適,

(2)道備選題中學生乙會的道分別記為,,不會的道分別記為.

方案一:學生乙從道備選題中任意抽出道的結(jié)果有:,,共5種,抽中會的備選題的結(jié)果有,,,共3種.

所以學生乙可參加復賽的概率.

方案二:學生甲從道備選題中任意抽出道的結(jié)果有

,,,,,,共種,

抽中至少道會的備選題的結(jié)果有:

,,,,,,種,

所以學生乙可參加復賽的概率

因為,所以學生乙選方案二進入復賽的可能性更大.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在正方體中,點、分別是棱的中點,給出下列結(jié)論:

①直線所成角為;②正方體的所有棱中與直線異面的有條;③直線平面;④平面平面.其中正確的是(

A.①②B.②③C.②④D.①④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線的參數(shù)方程為為參數(shù),曲線上的點的極坐標分別為

1)過O作線段的垂線,垂足為H,求點H的軌跡的直角坐標方程;

2)求兩點間的距離的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(2017·石家莊一模)祖暅是南北朝時期的偉大數(shù)學家,5世紀末提出體積計算原理,即祖暅原理:“冪勢既同,則積不容異”.意思是:夾在兩個平行平面之間的兩個幾何體,被平行于這兩個平面的任何一個平面所截,如果截面面積都相等,那么這兩個幾何體的體積一定相等.現(xiàn)有以下四個幾何體:圖①是從圓柱中挖去一個圓錐所得的幾何體,圖②、圖③、圖④分別是圓錐、圓臺和半球,則滿足祖暅原理的兩個幾何體為(  )

A. ①② B. ①③

C. ②④ D. ①④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系中,直線過原點且傾斜角為.以坐標原點為極點,軸正半軸為極軸建立坐標系,曲線的極坐標方程為.在平面直角坐標系中,曲線與曲線關于直線對稱.

(Ⅰ)求曲線的極坐標方程;

(Ⅱ)若直線過原點且傾斜角為,設直線與曲線相交于,兩點,直線與曲線相交于,兩點,當變化時,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《算法統(tǒng)宗》是中國古代數(shù)學名著,由明代數(shù)學家程大位所著,該作完善了珠算口訣,確立了算盤用法,完成了由籌算到珠算的徹底轉(zhuǎn)變,該作中有題為“李白沽酒”“李白街上走,提壺去買酒。遇店加一倍,見花喝一斗,三遇店和花,喝光壺中酒。借問此壺中,原有多少酒?”,如圖為該問題的程序框圖,若輸出的值為0,則開始輸入的值為(

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓經(jīng)過點且與直線相切,圓心的軌跡為曲線,點為曲線上一點.

1)求的值及曲線的方程;

2)若為曲線上異于的兩點,且.記點到直線的距離分別為,判斷是否為定值,若是,請求出該定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的前項和為,,,.

1)若,求的值;

2)若數(shù)列的前項成公差不為0的等差數(shù)列,求的最大值;

3)若,是否存在,使為等比數(shù)列?若存在,求出所有符合題意的的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2019年是新中國成立七十周年,新中國成立以來,我國文化事業(yè)得到了充分發(fā)展,尤其是黨的十八大以來,文化事業(yè)發(fā)展更加迅速,下圖是從2013 年到 2018 年六年間我國公共圖書館業(yè)機構(gòu)數(shù)(個)與對應年份編號的散點圖(為便于計算,將 2013 年編號為 1,2014 年編號為 2,…,2018年編號為 6,把每年的公共圖書館業(yè)機構(gòu)個數(shù)作為因變量,把年份編號從 1 到 6 作為自變量進行回歸分析),得到回歸直線,其相關指數(shù),給出下列結(jié)論,其中正確的個數(shù)是( )

①公共圖書館業(yè)機構(gòu)數(shù)與年份的正相關性較強

②公共圖書館業(yè)機構(gòu)數(shù)平均每年增加13.743個

③可預測 2019 年公共圖書館業(yè)機構(gòu)數(shù)約為3192個

A.0B.1C.2D.3

查看答案和解析>>

同步練習冊答案