【題目】在直角坐標(biāo)系中,以原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,點的極坐標(biāo)為,點的極坐標(biāo)為,曲線的直角坐標(biāo)方程為:.
(1)求曲線和直線的極坐標(biāo)方程;
(2)過點的射線交曲線于點,交直線于點,若,求射線所在直線的直角坐標(biāo)方程.
【答案】(1); (2)
【解析】
(1)由,,能求出曲線的極坐標(biāo)方程,把點的極坐標(biāo)和點的極坐標(biāo)都化為直角坐標(biāo),求出直線的直角坐標(biāo)方程,由此能求出直線的極坐標(biāo)方程;
(2)設(shè)射線,代入曲線,得:,代入直線,得:,由,得到,由此能求出射線所在直線的直角坐標(biāo)方程.
(1)因為曲線的直角坐標(biāo)方程為:.
所以,
因為,,
所以曲線的極坐標(biāo)方程為,即,
因為點的極坐標(biāo)為,點的極坐標(biāo)為,
所以點的直角坐標(biāo)為,點的直角坐標(biāo)為,
所以直線的直角坐標(biāo)方程為,
所以直線的極坐標(biāo)方程為.
(2)設(shè)射線,代入曲線,得:,
代入直線,得:,
因為,
所以,
所以,
所以射線所在直線的直角坐標(biāo)方程為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),;
若函數(shù)在上存在零點,求a的取值范圍;
設(shè)函數(shù),,當(dāng)時,若對任意的,總存在,使得,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
討論函數(shù)的單調(diào)性;
當(dāng)時,求函數(shù)在區(qū)間上的零點個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(2)若存在,且,使得,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(I)若函數(shù)處取得極值,求實數(shù)的值;并求此時上的最大值;
(Ⅱ)若函數(shù)不存在零點,求實數(shù)a的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于函數(shù)f(x),若f(x0)=x0,則稱x0為f(x)的不動點.設(shè)f(x)=x3+ax2+bx+3.
(1)當(dāng)a=0時,
(i)求f(x)的極值點;
(ⅱ)若存在x0既是f(x)的極值點,也是f(x)的不動點,求b的值;
(2)是否存在a,b,使得f(x)有兩個極值點,且這兩個極值點均為f(x)的不動點?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某蛋糕店每天制作生日蛋糕若干個,每個生日蛋糕成本為50元,每個蛋糕的售價為100元,如果當(dāng)天賣不完,剩余的蛋糕作垃圾處理.現(xiàn)搜集并整理了100天生日蛋糕的日需求量(單位:個),得到如圖所示的柱狀圖.100天記錄的各需求量的頻率作為每天各需求量發(fā)生的概率.
(1)若該蛋糕店某一天制作生日蛋糕17個,設(shè)當(dāng)天的需求量為,則當(dāng)天的利潤(單位:元)是多少?
(2)若蛋糕店一天制作17個生日蛋糕.
①求當(dāng)天的利潤(單位:元)關(guān)于當(dāng)天需求量的函數(shù)解析式;
②求當(dāng)天的利潤不低于600圓的概率.
(3)若蛋糕店計劃一天制作16個或17個生日蛋糕,請你以蛋糕店一天利潤的平均值作為決策依據(jù),應(yīng)該制作16個還是17個生日蛋糕?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某小學(xué)六年級學(xué)生的進(jìn)行一分鐘跳繩檢測,現(xiàn)一班二班各有50人,根據(jù)檢測結(jié)果繪出了一班的頻數(shù)分布表和二班的頻率分布直方圖.
一班檢測結(jié)果頻數(shù)分布表:
跳繩個數(shù)區(qū)間 | |||||
頻數(shù) | 7 | 13 | 20 | 8 | 2 |
(1)根據(jù)給出的圖表估計一班和二班檢測結(jié)果的中位數(shù)(結(jié)果保留兩位小數(shù));
(2)跳繩個數(shù)不小于100個為優(yōu)秀,填寫下面2×2列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有95%的把握認(rèn)為檢測結(jié)果是否優(yōu)秀與班級有關(guān).
一班 | 二班 | 合計 | |
優(yōu)秀 | |||
不優(yōu)秀 | |||
合計 |
參考公式及數(shù)據(jù):,
0.100 | 0.050 | 0.010 | |
2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地有A,B、C、D四人先后感染了新型冠狀病毒,其中只有A到過疫區(qū),B肯定是受A感染的,對于C,因為難以判定他是受A還是受B感染的,于是假定他受A和受B感染的概率都是,同樣也假設(shè)D受A、B和C感染的概率都是.在這種假定之下,B、C、D中直接受A感染的人數(shù)X就是一個隨機(jī)變量,寫出X的可能取值為______,并求X的均值(即數(shù)學(xué)期望)為______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com