【題目】由于疫情影響,今年我們學(xué)校開展線上教學(xué),高一年級某班班主任為了了解學(xué)生上網(wǎng)學(xué)習(xí)時(shí)間,對本班40名學(xué)生某天上網(wǎng)學(xué)習(xí)時(shí)間進(jìn)行了調(diào)查,將數(shù)據(jù)(取整數(shù))整理后,繪制出如圖所示頻率分布直方圖,已知從左到右各個(gè)小組的頻率分別是0.15,0.250.35,0.20,0.05,則根據(jù)直方圖所提供的信息.

1)這一天上網(wǎng)學(xué)習(xí)時(shí)間在分鐘之間的學(xué)生有多少人?

2)這40位同學(xué)的線上平均學(xué)習(xí)時(shí)間是多少?

3)如果只用這40名學(xué)生這一天上網(wǎng)學(xué)習(xí)時(shí)間作為樣本去推斷該校高一年級全體學(xué)生該天的上網(wǎng)學(xué)習(xí)時(shí)間,這樣推斷是否合理?為什么?

【答案】114人(2104.9分鐘(3)這樣推斷不合理.見解析

【解析】

1)根據(jù)頻數(shù)樣本容量頻率計(jì)算即可;

2)根據(jù)每組的中值與頻率積的和即可估計(jì)總體的平均值;

3)根據(jù)樣本的構(gòu)成來分析,不夠全面,所以推斷不合理.

1)因?yàn)轭l數(shù)樣本容量頻率,一天上網(wǎng)學(xué)習(xí)時(shí)間在分鐘之間的學(xué)生所占頻率為0.35,

所以一天上網(wǎng)學(xué)習(xí)時(shí)間在分鐘之間的學(xué)生人數(shù)為(人)

240位同學(xué)的線上學(xué)習(xí)時(shí)間為:

分鐘

3)因?yàn)樵摌颖镜倪x取只在高一某班,不具有代表性,所以這樣推斷不合理.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,橢圓的方程為(為參數(shù));以原點(diǎn)為極點(diǎn),以軸正半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為

(1)求橢圓的極坐標(biāo)方程,及圓的直角坐標(biāo)方程;

(2)若動點(diǎn)在橢圓上,動點(diǎn)在圓上,求的最大值;

(3)若射線分別與橢圓交于點(diǎn),求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線的極坐標(biāo)方程為,直線,直線.以極點(diǎn)為原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系.

(1)求直線,的直角坐標(biāo)方程以及曲線的參數(shù)方程;

(2)已知直線與曲線交于,兩點(diǎn),直線與曲線交于兩點(diǎn),求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)z1是虛數(shù),z2z1是實(shí)數(shù),且﹣1≤z2≤1

1)求|z1|的值以及z1的實(shí)部的取值范圍;

2)若ω,求證ω為純虛數(shù);

3)求z2ω2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若恒成立,試確定實(shí)數(shù)的取值范圍;

(3)證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司近年來特別注重創(chuàng)新產(chǎn)品的研發(fā),為了研究年研發(fā)經(jīng)費(fèi)(單位:萬元)對年創(chuàng)新產(chǎn)品銷售額(單位:十萬元)的影響,對近10年的研發(fā)經(jīng)費(fèi)與年創(chuàng)新產(chǎn)品銷售額(其中)的數(shù)據(jù)作了初步處理,得到如圖的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.

其中,,,,

.現(xiàn)擬定關(guān)于的回歸方程為.

1)求,的值(結(jié)果精確到);

2)根據(jù)擬定的回歸方程,預(yù)測當(dāng)研發(fā)經(jīng)費(fèi)為萬元時(shí),年創(chuàng)新產(chǎn)品銷售額是多少?

參考公式:

求線性回歸方程系數(shù)公式 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是邊長為2的正方形,平面 為等腰直角三角形,,的中點(diǎn),的中點(diǎn).

(1)求異面直線所成角的余弦值;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知 是橢圓的左右焦點(diǎn), 為橢圓的上頂點(diǎn),點(diǎn)在橢圓上,直線軸的交點(diǎn)為 為坐標(biāo)原點(diǎn),且,

(1)求橢圓的方程;

(2)過點(diǎn)作兩條互相垂直的直線分別與橢圓交于, 兩點(diǎn)(異于點(diǎn)),證明:直線過定點(diǎn),并求該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知.

(1)解關(guān)于的不等式

(2)若不等式的解集為,求實(shí)數(shù)的值.

查看答案和解析>>

同步練習(xí)冊答案