【題目】已知單調遞增的等比數(shù)列滿足:.,的等差中項.又數(shù)列滿足:,,.

1)求數(shù)列的通項公式;

2)若,且數(shù)列為等比數(shù)列,求的值;

3)若,且為數(shù)列的最小項,求的取值范圍.

【答案】1;(2;(3.

【解析】

1)根據(jù)等比數(shù)列以及等差數(shù)列的性質求出數(shù)列的通項公式即可;

2)代入的值,設出數(shù)列的公比,得到關于公比和和的方程組,解出即可;

3)求出數(shù)列的通項公式,結合函數(shù)的單調性以及為數(shù)列的最小項,得到關于的不等式組,解出即可.

1)設等比數(shù)列的公比為,

因為.,的等差中項,

所以,

.

解得,(舍去).

所以.

2時,,

所以,

而數(shù)列是等比數(shù)列,設公比是,

解得.

所以.

3)若,

,

,其中,

為數(shù)列的最小項,而是遞增數(shù)列,

是遞減數(shù)列,故,

故只需,即,解得.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某調查機構對全國互聯(lián)網行業(yè)進行調查統(tǒng)計,得到整個互聯(lián)網行業(yè)從業(yè)者年齡分布餅狀圖,90后從事互聯(lián)網行業(yè)崗位分布條形圖,則下列結論中不正確的是(

注:90后指1990年及以后出生,80后指1980-1989年之間出生,80前指1979年及以前出生.

A.互聯(lián)網行業(yè)從業(yè)人員中90后占一半以上

B.互聯(lián)網行業(yè)中從事技術崗位的人數(shù)超過總人數(shù)的

C.互聯(lián)網行業(yè)中從事運營崗位的人數(shù)90后比80前多

D.互聯(lián)網行業(yè)中從事技術崗位的人數(shù)90后比80后多

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列四個命題中,真命題的個數(shù)是 (  )

①命題:“已知 ,“”是“”的充分不必要條件”;

②命題:“p且q為真”是“p或q為真”的必要不充分條件;

③命題:已知冪函數(shù)的圖象經過點(2,),則f(4)的值等于;

④命題:若,則

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的短軸長為,過點,的直線傾斜角為.

1)求橢圓的方程;

2)是否存在過點且斜率為的直線,使直線交橢圓于兩點,以為直徑的圓過點?若存在,求出直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù),,其中為正實數(shù).

1)若的圖象總在函數(shù)的圖象的下方,求實數(shù)的取值范圍;

2)設,證明:對任意,都有.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù).

1)當時,求函數(shù)在點處的切線方程;

2)若函數(shù)存在兩個零點.

①實數(shù)的取值范圍;

②證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,過點的直線有兩個不同的交點,線段的中點為,為坐標原點,直線與直線分別交直線于點.

(Ⅰ)求橢圓的標準方程;

(Ⅱ)求線段的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知動圓與圓外切且與軸相切.

1)求圓心的軌跡的方程;

2)過作斜率為的直線交曲線,兩點,

①若,求直線的方程;

②過兩點分別作曲線的切線,,求證:,的交點恒在一條定直線上.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在全面抗擊新冠肺炎疫情這一特殊時期,我市教育局提出“停課不停學”的口號,鼓勵學生線上學習.某校數(shù)學教師為了調查高三學生數(shù)學成績與線上學習時間之間的相關關系,對高三年級隨機選取45名學生進行跟蹤問卷,其中每周線上學習數(shù)學時間不少于5小時的有19人,余下的人中,在檢測考試中數(shù)學平均成績不足120分的占,統(tǒng)計成績后得到如下列聯(lián)表:

分數(shù)不少于120

分數(shù)不足120

合計

線上學習時間不少于5小時

4

19

線上學習時間不足5小時

合計

45

1)請完成上面列聯(lián)表;并判斷是否有99%的把握認為“高三學生的數(shù)學成績與學生線上學習時間有關”;

2)①按照分層抽樣的方法,在上述樣本中從分數(shù)不少于120分和分數(shù)不足120分的兩組學生中抽取9名學生,設抽到不足120分且每周線上學習時間不足5小時的人數(shù)是,求的分布列(概率用組合數(shù)算式表示);

②若將頻率視為概率,從全校高三該次檢測數(shù)學成績不少于120分的學生中隨機抽取20人,求這些人中每周線上學習時間不少于5小時的人數(shù)的期望和方差.

(下面的臨界值表供參考)

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式其中

查看答案和解析>>

同步練習冊答案