分析 (1)對f(x)化簡配方得:f(x)=(2x-2)2-10,利用函數的單調性質可求函數f(x)的 最大值和最小值;
(2)實數a滿足f(x)-a≥0恒成立⇒a≤[f(x)]min,由f(x)=(2x-2)2-10≥-10即可求得∴[f(x)]min,=-10,從而可求a的取值范圍.
解答 解:(1)∵f(x)=4x-2x+2-6=(2x-2)2-10,
又x∈[0,3],
∴2x∈[1,8],
∴當2x=2時,函數f(x)取得最小值-10;
當2x=8時,函數f(x)取得最大值62-10=26.
(2)∵實數a滿足f(x)-a≥0恒成立,
∴a≤[f(x)]min,
∵f(x)=4x-2x+2-6=(2x-2)2-10≥-10,
∴[f(x)]min,=-10,
∴a≤-10.
點評 本題考查函數恒成立問題,考查指數函數的單調性與最值,考查等價轉化思想與運算能力,屬于中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (-1,0) | B. | (-1,2) | C. | (-1,2] | D. | (0,2] |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com