已知長方形的四個頂點A(0,0),B(2,0),C(2,1)和D(0,1),一質(zhì)點從AB的中點沿與AB夾角為的方向射到BC上的點后,依次反射到CD、DA和AB上的點、(入射角等于反射角),設(shè)坐標為(),若,則tan的取值范圍是(    )
A.()         B.()        C.()        D.(
C
設(shè)B=x,∠B=θ,則C=1-x,∠C、∠D、∠A均為θ,∴tanθ=.又tanθ=,∴.而tanθ=,∴.又tanθ=,∴.依題設(shè)1<<2,即1<<2,∴4<<5,<x<.∴<tanθ<,故選C
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,以AB為直徑的圓有一內(nèi)接梯形,且.若雙曲線以A、B為焦點,且過C、D兩點,則當梯形的周長最大時,雙曲線的離心率為(      ).

A、        B、     C、2       D、

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知分別是直線上的兩個動點,線段的長為,的中點.
(1)求動點的軌跡的方程;
(2)過點任意作直線(與軸不垂直),設(shè)與(1)中軌跡交于兩點,與軸交于點.若,,證明:為定值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設(shè)軸上兩點,點的橫坐標為2,且,若直線的方程為,則直線的方程為(       )             
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系中,設(shè)點,坐標原點在以線段為直徑的圓上
(Ⅰ)求動點的軌跡C的方程;
(Ⅱ)過點的直線與軌跡C交于兩點,點關(guān)于軸的對稱點為,試判斷直線是否恒過一定點,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設(shè)橢圓的左、右頂點分別為,點在橢圓上且異于兩點,為坐標原點.
(Ⅰ)若直線的斜率之積為,求橢圓的離心率;
(Ⅱ)若,證明直線的斜率 滿足

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

拋物線上的兩點A、B到焦點的距離和是5,則線段AB的中點到軸的距離為(   )
A.1             B.2            C.3             D.4

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓與雙曲線有相同的焦點,則的值是 (   )
A.B.1或–2C.1或D.1

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

雙曲線的離心率為2,則的最小值為(   )
A.B.C.D.

查看答案和解析>>

同步練習冊答案