A. | $x=\frac{5π}{12}$ | B. | $x=\frac{π}{3}$ | C. | $x=\frac{π}{6}$ | D. | $x=\frac{π}{12}$ |
分析 先根據(jù)二倍角公式和兩角差的正弦公式化簡得到f(x)=sin(2x-$\frac{π}{3}$)-$\frac{\sqrt{3}}{2}$,再根據(jù)對稱軸的定義即可求出.
解答 解:f(x)=sinxcosx-$\sqrt{3}{cos^2}$x=$\frac{1}{2}$sin2x-$\frac{\sqrt{3}}{2}$cos2x-$\frac{\sqrt{3}}{2}$=sin(2x-$\frac{π}{3}$)-$\frac{\sqrt{3}}{2}$,
則其對稱軸為2x-$\frac{π}{3}$=kπ+$\frac{π}{2}$,k∈Z,
∴x=$\frac{kπ}{2}$+$\frac{5π}{12}$,k∈Z,
當(dāng)k=0時,x=$\frac{5π}{12}$,
∴函數(shù)f(x)圖象的一條對稱軸是x=$\frac{5π}{12}$,
故選:A
點評 本題考查了三角函數(shù)的化簡,以及正弦函數(shù)的圖象和性質(zhì),關(guān)鍵掌握二倍角公式,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2 | B. | 2 | C. | 6 | D. | 10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 30° | B. | 60° | C. | 120° | D. | 150° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 命題?x0∈R,x${\;}_{0}^{2}$+1>3x0的否定是:?x∈R,x2+1<3x | |
B. | 命題△ABC中,若A>B,則cosA>cosB的否命題是真命題 | |
C. | 平面向量$\overrightarrow{a}$與$\overrightarrow$的夾角是鈍角的充要條件是:$\overrightarrow{a}$•$\overrightarrow$<0 | |
D. | ω=1是函數(shù)f(x)=sinωx-cosωx的最小正周期為2π的充分不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | p∧q | B. | p∨q | C. | (¬p)∧q | D. | (¬p)∨q |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com