下表中的數(shù)陣為“森德拉姆數(shù)篩”,其特點(diǎn)是每行每列都成等差數(shù)列,記第i行第j列的數(shù)為aij,則數(shù)字73在表中出現(xiàn)的次數(shù)為
 

 2 3 4 5 6 7
 3 5 7 9 11 13
 4 7 10 13 16 19
 5 9 13 17 21 25
 6 11 16 21 26 31
 7 13 19 25 31 37
考點(diǎn):歸納推理
專題:推理和證明
分析:第1行數(shù)組成的數(shù)列A1j(j=1,2,…)是以2為首項(xiàng),公差為1的等差數(shù)列,第j列數(shù)組成的數(shù)列Aij(i=1,2,…)是以j+1為首項(xiàng),公差為j的等差數(shù)列,求出通項(xiàng)公式,就求出結(jié)果.
解答: 解:第i行第j列的數(shù)記為Aij.那么每一組i與j的組合就是表中一個(gè)數(shù).
因?yàn)榈谝恍袛?shù)組成的數(shù)列A1j(j=1,2,…)是以2為首項(xiàng),公差為1的等差數(shù)列,
所以A1j=2+(j-1)×1=j+1,
所以第j列數(shù)組成的數(shù)列Aij(i=1,2,…)是以j+1為首項(xiàng),公差為j的等差數(shù)列,
所以Aij=(j+1)+(i-1)×j=ij+1.
令A(yù)ij=ij+1=73,
∴ij=72=1×72=2×36=3×24=4×18=6×12=8×9=9×8=12×6=18×4=24×3=36×2=72×1,
所以,表中73共出現(xiàn)12次.
故答案為:12.
點(diǎn)評:本題考查了行列模型的等差數(shù)列應(yīng)用,解題時(shí)利用首項(xiàng)和公差寫出等差數(shù)列的通項(xiàng)公式,運(yùn)用通項(xiàng)公式求值,是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

過點(diǎn)P(3,0)作一直線l,使它被兩直線l1:2x-y-2=0和l2:x+y+3=0所截的線段AB以P為中點(diǎn),求此直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在極坐標(biāo)系中,點(diǎn)(2,
π
6
)到極軸的距離
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

小明在做一道數(shù)學(xué)題目時(shí)發(fā)現(xiàn):若復(fù)數(shù)z1=cosα1+isinα1,z2=cosα2+isinα2,z3=cosα3+isinα3(其中α1,α2,α3∈R),則z1•z2=cos(α12)+isin(α12),z2•z3=cos(α23)+isin(α23),根據(jù)上面的結(jié)論,可以提出猜想:z1•z2•z3=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正三角形ABC的邊長為a,利用斜二測畫法得到的平面直觀圖為△A′B′C′,那么△A′B′C′的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,cos2
A
2
=
b+c
2c
(a,b,c分別為角A,B,C的對邊),則cos
A+B
2
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知某幾何體的三視圖如圖所示,其中正視圖與側(cè)視圖都是直角邊為2的等腰直角三角形,則該幾何體的表面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

觀察下列問題:
已知(1-2x)2013=a0+a1x+a2x2+a3x3+…+a2013x2013,
令x=1,可得a0+a1+a2+…+a2013=(1-2•1)2013=-1,
令x=1,可得a0-a1+a2+…-a2013=(1+2•1)2013=32013,
請仿照這種“賦值法”,令x=0,得到a0=
 
,并求出
a1
2
+
a2
22
+
a3
23
+…+
a2013
22013
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中錯(cuò)誤的是(  )
A、命題“若x2-5x+6=0,則x=3”的逆否命題是“若x≠3,則x2-5x+6≠0”
B、已知命題p和q,若p∨q為假命題,則命題p與q中必一真一假
C、若x、y∈R,則“x=y”是xy≥(
x+y
2
2成立的充要條件
D、對命題p:?x∈R,使x2+x+2<0,則¬p:?x∈R,則x2+x+2≥0

查看答案和解析>>

同步練習(xí)冊答案