點(diǎn)M在圓心為C1的方程x2+y2+6x-2y+1=0上,點(diǎn)N在圓心為C2的方程x2+y2+2x+4y+1=0上,求MN的最大值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)圓心為C1的方程為(x-5)2+(y-3)2=9,圓心為C2的方程為x2+y2-4x+2y-9=0,則兩圓的圓心距等于( 。
A、5
B、25
C、10
D、2
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)圓心為C1的方程為(x-5)2+(y-3)2=9,圓心為C2的方程為x2+y2-4x+2y-9=0,則圓心距等于

(  )

A.5         B.25        C.10              D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)橢圓C:的兩個(gè)焦點(diǎn)為,點(diǎn)P在橢圓C上,且.(1)求橢圓C的方程;(2)若直線過圓的圓心M,交橢圓C于A、B兩點(diǎn),且A、B兩點(diǎn)關(guān)于點(diǎn)M對(duì)稱,求直線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,平面上兩條直線ABAP互相垂直,AB=1,AP=3,D在直線AB上,AD=4,平面上動(dòng)點(diǎn)M在直線AB上的射影為點(diǎn)N,滿足DM=2BN.

(1)求動(dòng)點(diǎn)M的軌跡C的方程;

(2)若直線y=kx+M(k≠0,M≠0)與點(diǎn)M的軌跡C交于不同的兩點(diǎn)E、F,且E、F都在以P為圓心的圓上,求實(shí)數(shù)M的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案