集合S={0,1,2,3,4,5},A是S的一個(gè)子集,當(dāng)x∈A時(shí),若有x-1∉A且x+1∉A,則稱x為A的一個(gè)“孤獨(dú)元素”.集合B是S的一個(gè)子集,B中含4個(gè)元素且B中無(wú)“孤獨(dú)元素”,這樣的集合B共有( 。﹤(gè).
A、6B、7C、5D、4
考點(diǎn):子集與真子集
專題:集合
分析:由S={0,1,2,3,4,5},結(jié)合x∈A時(shí),若有x-1∉A,且x+1∉A,則稱x為A的一個(gè)“孤立元素”,我們用列舉法列出滿足條件的所有集合,即可得到答案.
解答: 解:∵S={0,1,2,3,4,5},
其中不含“孤立元”的集合4個(gè)元素必須是:
共有{0,1,2,3},{0,1,3,4},{0,1,4,5}},{1,2,3,4},{1,2,4,5},{2,3,4,5}共6個(gè)
那么S中無(wú)“孤立元素”的4個(gè)元素的子集A的個(gè)數(shù)是6個(gè).
故選A.
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是元素與集合關(guān)系的判斷,我們要根據(jù)定義列出滿足條件列出所有不含“孤立元”的集合,及所有三元集的個(gè)數(shù),進(jìn)而求出不含“孤立元”的集合個(gè)數(shù).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在公比為正數(shù)的等比數(shù)列{an}中,a1+a2=2,a3+a4=8,則S8等于( 。
A、21B、42
C、135D、170

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列說法:
①函數(shù)y=
-2x 3
與y=x
-2x
是同一函數(shù);
②空集是任何集合的真子集;
③集合{y|y=x2+1}與集合{(x,y)|y=x2+1}不相等;
④集合{x∈N|x=
6
a
,a∈N*}中只有四個(gè)元素;
其中正確答案的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}中,a4=5,a9=17,則a14=( 。
A、11B、22C、29D、12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A={a2-1,a-2,a},B={3,2a-1,a2},若A∩B={3},求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在梯形ABCD中,AB∥CD,AD=DC=CB=a,∠ABC=60°.平面ACEF⊥平面ABCD,四邊形ACEF是矩形,AE=a,點(diǎn)M在線段EF上.
(1)求證:BC⊥平面ACEF;
(2)當(dāng)FM為何值時(shí),AM∥平面BDE?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知四棱錐P-ABCD,等邊△APC的邊長(zhǎng)為2,四邊形ABCD為矩形,平面ABCD⊥平面PBC,E為PB的中點(diǎn).求證:PD∥平面AEC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,AB∥CD,AB⊥AD,CD=2AB=2,AD=2,PA=
3
,平面PAD⊥底面ABCD,PA⊥AD,E和F分別是CD和PC的中點(diǎn).
(1)求異面直線PD與BE所成角的正弦值;
(2)求證:PA⊥底面ABCD;
(3)求直線PC與平面PAB所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若方程x2+y2+Dx+Ey+F=0所表示的圓關(guān)于直線y=x對(duì)稱,則D,E,F(xiàn)滿足的關(guān)系為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案