【題目】如圖1,在矩形PABC中,AB=2BC=4,D為PC的中點(diǎn),以AD為折痕將△PAD折起,折到如圖2的位置,使得PB=2.
(1)求證:AP⊥平面PBD
(2)求平面PCD與平面PBC所成銳二面角的余弦值.
【答案】(1)見(jiàn)解析; (2).
【解析】
(1)通過(guò)計(jì)算可以發(fā)現(xiàn)AP2+BP2=AB2,則AP⊥BP,進(jìn)而容易得證;
(2)解題的關(guān)鍵是證明平面ABD⊥平面APD,進(jìn)而可得OP⊥平面ABD,從而建立空間直角坐標(biāo)系O﹣xyz,由此得解.
(1)由于在矩形PABC中,AB=2BC=4,D為PC的中點(diǎn),以AD為折痕將△PAD折起,折到如圖2的位置,使得PB=2,所以,
由于AP2+BP2=AB2,所以AP⊥BP,
又AP⊥PD,BP∩PD=D,且BP,PD都在平面PBD中,
所以AP⊥平面PBD.
(2)取AD的中點(diǎn)O,則AO=OD=OP,,連接PO,BD,則,
∵AB=4,∴AB2=AD2+BD2,即AD⊥BD,
又由(1)知,BD⊥AP,∴BD⊥平面APD,∴平面ABD⊥平面APD,
顯然,OP⊥AD,OP⊥平面ABD,
過(guò)點(diǎn)O作直線OM∥BD,則OM⊥AD,故建立如圖所示空間直角坐標(biāo)系O﹣xyz,
則,,
設(shè)平面PCD的法向量為,
則,即,令y=z=1,則x=﹣1,故,
設(shè)平面PBC的法向量為,
則,即,令x=y=1,則z=3,故,
∴,
∴平面PCD與平面PBC所成銳二面角的余弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某小學(xué)對(duì)五年級(jí)的學(xué)生進(jìn)行體質(zhì)測(cè)試,已知五年一班共有學(xué)生30人,測(cè)試立定跳遠(yuǎn)的成績(jī)用莖葉圖表示如圖(單位:):男生成績(jī)?cè)?75以上(包括175)定義為“合格”,成績(jī)?cè)?75以下(不包括175)定義為“不合格”.女生成績(jī)?cè)?65以上(包括165)定義為“合格”,成績(jī)?cè)?65以下(不包括165)定義為“不合格”.
(1)求五年一班的女生立定跳遠(yuǎn)成績(jī)的中位數(shù);
(2)在五年一班的男生中任意選取3人,求至少有2人的成績(jī)是合格的概率;
(3)若從五年一班成績(jī)“合格”的學(xué)生中選取2人參加復(fù)試,用表示其中男生的人數(shù),寫出的分布列,并求的數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知過(guò)點(diǎn)A(0,1)且斜率為k的直線l與圓C:(x-2)2+(y-3)2=1交于M,N兩點(diǎn).
(1)求k的取值范圍;
(2)若=12,其中O為坐標(biāo)原點(diǎn),求|MN|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商店計(jì)劃每天購(gòu)進(jìn)某商品若干件,商店每銷售一件該商品可獲利潤(rùn)60元,若供大于求,剩余商品全部退回,但每件商品虧損10元;若供不應(yīng)求,則從外部調(diào)劑,此時(shí)每件調(diào)劑商品可獲利40元.
(1)若商品一天購(gòu)進(jìn)該商品10件,求當(dāng)天的利潤(rùn)(單位:元)關(guān)于當(dāng)天需求量(單位:件,)的函數(shù)解析式;
(2)商店記錄了50天該商品的日需求量(單位:件,),整理得下表:
若商店一天購(gòu)進(jìn)10件該商品,以50天記錄的各需求量的頻率作為各需求量發(fā)生的概率,求當(dāng)天的利潤(rùn)在區(qū)間內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若恒成立,求實(shí)數(shù)的最大值;
(2)在(1)成立的條件下,正實(shí)數(shù),滿足,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將圓上每一點(diǎn)的縱坐標(biāo)保持不變,橫坐標(biāo)伸長(zhǎng)為原來(lái)的2倍,得曲線C.
(Ⅰ)寫出曲線C的參數(shù)方程;
(Ⅱ)設(shè)直線與曲線C的交點(diǎn)為、,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,求過(guò)線段的中點(diǎn)且與垂直的直線的極坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知,若線段FP的中垂線l與拋物線C:總是相切.
(1)求拋物線C的方程;
(2)若過(guò)點(diǎn)Q(2,1)的直線l′交拋物線C于M,N兩點(diǎn),過(guò)M,N分別作拋物線的切線相交于點(diǎn)A.分別與y軸交于點(diǎn)B,C.
( i)證明:當(dāng)變化時(shí),的外接圓過(guò)定點(diǎn),并求出定點(diǎn)的坐標(biāo) ;
( ii)求的外接圓面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左焦點(diǎn),離心率為,點(diǎn)P為橢圓E上任一點(diǎn),且的最大值為.
(1)求橢圓E的方程;
(2)若直線l過(guò)橢圓的左焦點(diǎn),與橢圓交于A,B兩點(diǎn),且的面積為,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】世界互聯(lián)網(wǎng)大會(huì)是由中國(guó)倡導(dǎo)并每年在浙江省嘉興市桐鄉(xiāng)烏鎮(zhèn)舉辦的世界性互聯(lián)網(wǎng)盛會(huì),大會(huì)旨在搭建中國(guó)與世界互聯(lián)互通的國(guó)際平臺(tái)和國(guó)際互聯(lián)網(wǎng)共享共治的中國(guó)平臺(tái),讓各國(guó)在爭(zhēng)議中求共識(shí)在共識(shí)中謀合作在合作中創(chuàng)共贏.2019年10月20日至22日,第六屆世界互聯(lián)網(wǎng)大會(huì)如期舉行,為了大會(huì)順利召開(kāi),組委會(huì)特招募了1 000名志愿者.某部門為了了解志愿者的基本情況,調(diào)查了其中100名志愿者的年齡,得到了他們年齡的中位數(shù)為34歲,年齡在歲內(nèi)的人數(shù)為15,并根據(jù)調(diào)查結(jié)果畫出如圖所示的頻率分布直方圖:
(1)求,的值并估算出志愿者的平均年齡(同一組的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表);
(2)這次大會(huì)志愿者主要通過(guò)現(xiàn)場(chǎng)報(bào)名和登錄大會(huì)官網(wǎng)報(bào)名,即現(xiàn)場(chǎng)和網(wǎng)絡(luò)兩種方式報(bào)名調(diào)查.這100位志愿者的報(bào)名方式部分?jǐn)?shù)據(jù)如下表所示,完善下面的表格,通過(guò)計(jì)算說(shuō)明能
否在犯錯(cuò)誤的概率不超過(guò)0.001的前提下,認(rèn)為“選擇哪種報(bào)名方式與性別有關(guān)系”?
男性 | 女性 | 總計(jì) | |
現(xiàn)場(chǎng)報(bào)名 | 50 | ||
網(wǎng)絡(luò)報(bào)名 | 31 | ||
總計(jì) | 50 |
參考公式及數(shù)據(jù):,其中.
0.05 | 0.01 | 0.005 | 0.001 | |
3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com