【題目】如圖,四棱錐的底面是正方形,側(cè)棱底面,過(guò)垂直點(diǎn),作垂直點(diǎn),平面點(diǎn),點(diǎn)上一動(dòng)點(diǎn),且.

1)試證明不論點(diǎn)在何位置,都有;

2)求的最小值;

3)設(shè)平面與平面的交線為,求證:.

【答案】1)詳見(jiàn)解析;(2;(3)詳見(jiàn)解析.

【解析】

試題(1)先證明平面,再由平面得到;(2)將側(cè)面和側(cè)面沿著展開(kāi)至同一平面上,利用、、三點(diǎn)共線結(jié)合余弦定理求出的最小值,即線段的長(zhǎng)度;(3)先證平面,然后利用直線與平面平行的性質(zhì)定理證明.

試題解析:(1底面是正方形,

底面,,

,平面,

不論點(diǎn)在何位置都有平面

;

2)將側(cè)面繞側(cè)棱旋轉(zhuǎn)到與側(cè)面在同一平面內(nèi),如下圖示,

則當(dāng)、三點(diǎn)共線時(shí),取最小值,這時(shí),的最小值即線段的長(zhǎng),

設(shè),則

中,,,

在三角形中,有余弦定理得:

;

3)連結(jié),,,

,,,,,

,

,平面,

平面平面,.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

討論函數(shù)的單調(diào)性;

設(shè),對(duì)任意的恒成立,求整數(shù)的最大值;

求證:當(dāng)時(shí),

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,過(guò)橢圓Eab0)的左焦點(diǎn)F1x軸的垂線交橢圓EP,Q兩點(diǎn),點(diǎn)AB是橢圓E的頂點(diǎn),且ABOP,F2為右焦點(diǎn),△PF2Q的周長(zhǎng)為8

1)求橢圓E的方程;

2)過(guò)點(diǎn)F1作直線l與橢圓E交于C,D兩點(diǎn),若△OCD的面積為,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

)求函數(shù)的極值點(diǎn).

)設(shè)函數(shù),其中,求函數(shù)上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù).

(1)若,證明:;

(2)已知,若函數(shù)有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,,F分別在線段BCAD上,,將矩形ABEF沿EF折起記折起后的矩形為MNEF,且平面平面ECDF

求證:平面MFD

,求證:;

求四面體NFEC體積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(一),在直角梯形ABCP中,CP∥AB,CP⊥BC,AB=BC=CP,D是CP的中點(diǎn),將△PAD沿AD折起,使點(diǎn)P到達(dá)點(diǎn)P′的位置得到圖(二),點(diǎn)M為棱P′C上的動(dòng)點(diǎn).

(1)當(dāng)M在何處時(shí),平面ADM⊥平面P′BC,并證明;

(2)若AB=2,∠P′DC=135°,證明:點(diǎn)C到平面P′AD的距離等于點(diǎn)P′到平面ABCD的距離,并求出該距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知?jiǎng)訄A經(jīng)過(guò)定點(diǎn),且與直線相切,設(shè)動(dòng)圓圓心的軌跡為曲線.

(1)求曲線的方程;

(2)設(shè)過(guò)點(diǎn)的直線,分別與曲線交于兩點(diǎn),直線,的斜率存在,且傾斜角互補(bǔ),證明:直線的斜率為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在古代三國(guó)時(shí)期吳國(guó)的數(shù)學(xué)家趙爽創(chuàng)制了一幅“趙爽弦圖”,由四個(gè)全等的直角三角形圍成一個(gè)大正方形,中間空出一個(gè)小正方形(如圖陰影部分)。若直角三角形中較小的銳角為a,F(xiàn)向大正方形區(qū)城內(nèi)隨機(jī)投擲一枚飛鏢,要使飛鏢落在小正方形內(nèi)的概率為,則_____________。

查看答案和解析>>

同步練習(xí)冊(cè)答案