相關(guān)習(xí)題
 0  115611  115619  115625  115629  115635  115637  115641  115647  115649  115655  115661  115665  115667  115671  115677  115679  115685  115689  115691  115695  115697  115701  115703  115705  115706  115707  115709  115710  115711  115713  115715  115719  115721  115725  115727  115731  115737  115739  115745  115749  115751  115755  115761  115767  115769  115775  115779  115781  115787  115791  115797  115805  266669 

科目: 來源:2011-2012學(xué)年甘肅省高三百題集理科數(shù)學(xué)試卷(解析版)(四) 題型:解答題

已知向量動(dòng)點(diǎn)到定直線的距離等于并且滿足其中是坐標(biāo)原點(diǎn),是參數(shù).

(1)求動(dòng)點(diǎn)的軌跡方程,并判斷曲線類型;

(2)當(dāng)時(shí),求的最大值和最小值;

(3)如果動(dòng)點(diǎn)的軌跡是圓錐曲線,其離心率滿足求實(shí)數(shù)的取值范圍。

 

查看答案和解析>>

科目: 來源:2011-2012學(xué)年甘肅省高三百題集理科數(shù)學(xué)試卷(解析版)(四) 題型:解答題

已知橢圓的一個(gè)焦點(diǎn)是,兩個(gè)焦點(diǎn)與短軸的一個(gè)端點(diǎn)構(gòu)成等邊三角形.

(Ⅰ)求橢圓的方程;

(Ⅱ)過點(diǎn)且不與坐標(biāo)軸垂直的直線交橢圓兩點(diǎn),設(shè)點(diǎn)關(guān)于

的對(duì)稱點(diǎn)為 .

(i)求證:直線軸上一定點(diǎn),并求出此定點(diǎn)坐標(biāo);

(ii)求△面積的取值范圍。

 

查看答案和解析>>

科目: 來源:2011-2012學(xué)年甘肅省高三百題集理科數(shù)學(xué)試卷(解析版)(四) 題型:解答題

軸上動(dòng)點(diǎn)引拋物線的兩條切線、、為切點(diǎn).

(1)若切線的斜率分別為,求證: 為定值,并求出定值;

(2)求證:直線恒過定點(diǎn),并求出定點(diǎn)坐標(biāo); 

(3)當(dāng)最小時(shí),求的值.

 

查看答案和解析>>

科目: 來源:2011-2012學(xué)年甘肅省高三百題集理科數(shù)學(xué)試卷(解析版)(四) 題型:解答題

若圓過點(diǎn)且與直線相切,設(shè)圓心的軌跡為曲線,、為曲線上的兩點(diǎn),點(diǎn),且滿足.

(1)求曲線的方程;

(2)若,直線的斜率為,過兩點(diǎn)的圓與拋物線在點(diǎn)處有共同的切線,求圓的方程;

(3)分別過、作曲線的切線,兩條切線交于點(diǎn),若點(diǎn)恰好在直線上,求證:均為定值.

 

查看答案和解析>>

科目: 來源:2011-2012學(xué)年甘肅省高三百題集理科數(shù)學(xué)試卷(解析版)(四) 題型:解答題

已知定點(diǎn)A(-1,0),F(xiàn)(2,0),定直線l:x=,不在x軸上的動(dòng)點(diǎn)P與點(diǎn)F的距離是它到直線l的距離的2倍.設(shè)點(diǎn)P的軌跡為E,過點(diǎn)F的直線交E于B、C兩點(diǎn),直線AB、AC分別交l于點(diǎn)M、N

(Ⅰ)求E的方程;

(Ⅱ)試判斷以線段MN為直徑的圓是否過點(diǎn)F,并說明理由.

 

查看答案和解析>>

科目: 來源:2011-2012學(xué)年甘肅省高三百題集理科數(shù)學(xué)試卷(解析版)(四) 題型:解答題

如圖所示,在正三棱柱中,底面邊長(zhǎng)為,側(cè)棱長(zhǎng)為,是棱的中點(diǎn).

(Ⅰ)求證:平面;

(Ⅱ)求二面角的大;

(Ⅲ)求點(diǎn)到平面的距離.

 

查看答案和解析>>

科目: 來源:2011-2012學(xué)年甘肅省高三百題集理科數(shù)學(xué)試卷(解析版)(四) 題型:解答題

已知三棱錐P-ABC中,PA⊥ABC,AB⊥AC,PA=AC=½AB,N為AB上一點(diǎn),AB=4AN,M,S分別為PB,BC的中點(diǎn).

(Ⅰ)證明:CM⊥SN;

(Ⅱ)求SN與平面CMN所成角的大小.

 

查看答案和解析>>

科目: 來源:2011-2012學(xué)年甘肅省高三百題集理科數(shù)學(xué)試卷(解析版)(四) 題型:解答題

已知三棱錐P—ABC中,PC⊥底面ABC,,,二面角P-AB-C為,D、F分別為AC、PC的中點(diǎn),DE⊥AP于E.

(Ⅰ)求證:AP⊥平面BDE;                

(Ⅱ)求直線EB與平面PAC所成的角。

【解析】本試題主要考查了線面的垂直問題以及線面角的求解的綜合運(yùn)用。

 

查看答案和解析>>

科目: 來源:2011-2012學(xué)年甘肅省高三百題集理科數(shù)學(xué)試卷(解析版)(四) 題型:解答題

如圖,四棱錐S-ABCD中,SD底面ABCD,AB//DC,ADDC,

AB=AD=1,DC=SD=2,E為棱SB上的一點(diǎn),平面EDC平面SBC .

(Ⅰ)證明:SE=2EB;

(Ⅱ)求二面角A-DE-C的大小 .

 

查看答案和解析>>

科目: 來源:2011-2012學(xué)年甘肅省高三百題集理科數(shù)學(xué)試卷(解析版)(四) 題型:解答題

如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=900。

求證:PC⊥BC;

求點(diǎn)A到平面PBC的距離。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案