相關(guān)習(xí)題
 0  170151  170159  170165  170169  170175  170177  170181  170187  170189  170195  170201  170205  170207  170211  170217  170219  170225  170229  170231  170235  170237  170241  170243  170245  170246  170247  170249  170250  170251  170253  170255  170259  170261  170265  170267  170271  170277  170279  170285  170289  170291  170295  170301  170307  170309  170315  170319  170321  170327  170331  170337  170345  266669 

科目: 來源:不詳 題型:解答題

袋中有4個紅球,3個黑球,從袋中隨機(jī)地抽取4個球,設(shè)取到1個紅球得2分,取到1個黑球得1分.
(1)求得分X的分布列;(2)求得分大于6的概率.

查看答案和解析>>

科目: 來源:不詳 題型:填空題

袋中有5個黑球和3個白球,從中任取2個球,則其中至少有1個黑球的概率是________.

查看答案和解析>>

科目: 來源:不詳 題型:填空題

一個盒子里裝有相同大小的黑球10個,紅球12個,白球4個.從中任取兩個,其中白球的個數(shù)記為X,則等于________(用概率的式子表示).

查看答案和解析>>

科目: 來源:不詳 題型:解答題

某校組織一次冬令營活動,有8名同學(xué)參加,其中有5名男同學(xué),3名女同學(xué),為了活動的需要,要從這8名同學(xué)中隨機(jī)抽取3名同學(xué)去執(zhí)行一項(xiàng)特殊任務(wù),記其中有X名男同學(xué).
(1)求X的分布列;
(2)求去執(zhí)行任務(wù)的同學(xué)中有男有女的概率.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

從5名男生和3名女生中任選3人參加奧運(yùn)會火炬接力活動.若隨機(jī)變量X表示所選3人中女生的人數(shù),求X的分布表及P(X<2).

查看答案和解析>>

科目: 來源:不詳 題型:解答題

為了倡導(dǎo)健康、低碳、綠色的生活理念,某市建立了公共自行車服務(wù)系統(tǒng)鼓勵市民租用公共自行車出行公共自行車按每車每次的租用時間進(jìn)行收費(fèi),具體收費(fèi)標(biāo)準(zhǔn)如下:
①租用時間不超過1小時,免費(fèi);
②租用時間為1小時以上且不超過2小時,收費(fèi)1元;
③租用時間為2小時以上且不超過3小時,收費(fèi)2元;
④租用時間超過3小時的時段,按每小時2元收費(fèi)(不足1小時的部分按1小時計(jì)算)已知甲、乙兩人獨(dú)立出行,各租用公共自行車一次,兩人租車時間都不會超過3小時,設(shè)甲、乙租用時間不超過1小時的概率分別是0.4和0.5 ,租用時間為1小時以上且不超過2小時的概率分別是0.5和0.3.
(1)求甲、乙兩人所付租車費(fèi)相同的概率;
(2)設(shè)甲、乙兩人所付租車費(fèi)之和為隨機(jī)變量,求的分布列和數(shù)學(xué)期望E

查看答案和解析>>

科目: 來源:不詳 題型:解答題

某種動物由出生算起活到20歲的概率為0.8,活到25歲的概率為0.4,現(xiàn)有一個20歲的動物,求它能活到25歲的概率.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

某廣場上有4盞裝飾燈,晚上每盞燈都隨機(jī)地閃爍紅燈或綠燈,每盞燈出現(xiàn)紅燈的概率都是,出現(xiàn)綠燈的概率都是.記這4盞燈中出現(xiàn)紅燈的數(shù)量為X,當(dāng)這排裝飾燈閃爍一次時:
(1)求X=2時的概率;
(2)求X的數(shù)學(xué)期望.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

已知正方形ABCD的邊長為2,E,F,G,H分別是邊AB,BC,CD,DA的中點(diǎn).
(1)從C,D,E,F,G,H這六個點(diǎn)中,隨機(jī)選取兩個點(diǎn),記這兩個點(diǎn)之間的距離的平方為,求概率P.
(2)在正方形ABCD內(nèi)部隨機(jī)取一點(diǎn)P,求滿足的概率.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

某中學(xué)為豐富教工生活,國慶節(jié)舉辦教工趣味投籃比賽,有兩個定點(diǎn)投籃位置,在點(diǎn)投中一球得2分,在點(diǎn)投中一球得3分.其規(guī)則是:按先的順序投
籃.教師甲在點(diǎn)投中的概率分別是,且在、兩點(diǎn)投中與否相互獨(dú)立.
(1)若教師甲投籃三次,試求他投籃得分X的分布列和數(shù)學(xué)期望;
(2)若教師乙與甲在A、B點(diǎn)投中的概率相同,兩人按規(guī)則各投三次,求甲勝乙的概率.

查看答案和解析>>

同步練習(xí)冊答案