相關(guān)習題
 0  208985  208993  208999  209003  209009  209011  209015  209021  209023  209029  209035  209039  209041  209045  209051  209053  209059  209063  209065  209069  209071  209075  209077  209079  209080  209081  209083  209084  209085  209087  209089  209093  209095  209099  209101  209105  209111  209113  209119  209123  209125  209129  209135  209141  209143  209149  209153  209155  209161  209165  209171  209179  266669 

科目: 來源: 題型:

如圖是一個幾何體的三視圖,俯視圖是邊長為2cm的正三角形,正視圖中矩形的長邊為5cm.
(1)想象它的幾何結(jié)構(gòu)特征,畫出它的直觀圖;
(2)求該幾何體的體積和表面積.

查看答案和解析>>

科目: 來源: 題型:

為了解甲、乙兩廠的產(chǎn)品質(zhì)量,采用分層抽樣的方法從甲、乙兩廠生產(chǎn)的產(chǎn)品中分別抽取14件和5件,測量產(chǎn)品中微量元素x,y的含量(單位:毫克).下表是乙廠的5件產(chǎn)品的測量數(shù)據(jù):
編號12345
x169178166175180
y7580777081
(1)已知甲廠生產(chǎn)的產(chǎn)品共有98件,求乙廠生產(chǎn)的產(chǎn)品數(shù)量;
(2)當產(chǎn)品中的微量元素x,y滿足x≥175且y≥75時,該產(chǎn)品為優(yōu)等品.用上述樣本數(shù)據(jù)估計乙廠生產(chǎn)的優(yōu)等品的數(shù)量;
(3)從乙廠抽出的上述5件產(chǎn)品中,隨機抽取2件,求抽取的2件產(chǎn)品中恰有1件是優(yōu)等品的概率.

查看答案和解析>>

科目: 來源: 題型:

已知方程ax2+4x+b=0(a<0)的兩實根為m,n,方程ax2+3x+b=0的兩實根為p,q.
(1)若a,b均為負整數(shù),且|p-q|=1,求a,b的值;
(2)若p<1<q<2,m<n,求證:-2<m<1<n.

查看答案和解析>>

科目: 來源: 題型:

已知一個圓C和y軸相切,圓心在直線l1:x-3y=0上,且在直線l2:x-y=0上截得的弦長為2
7
,求圓C的方程.

查看答案和解析>>

科目: 來源: 題型:

在如圖所示的組合體中,三棱柱ABC-A1B1C1的側(cè)面ABB1A1是圓柱的軸截面,C是圓柱底面圓周上不與A、B重合的一個點.
(Ⅰ)若圓柱的軸截面是正方形,當點C是弧AB的中點時,求異面直線A1C與AB1的所成角的大。
(Ⅱ)當點C是弧AB的中點時,求四棱錐A1-BCC1B1與圓柱的體積比.

查看答案和解析>>

科目: 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
2
2
,直線bx-ay=ab與兩坐標軸圍成的三角形面積為4
2

(1)求橢圓C的方程;
(2)設(shè)橢圓C的左項點為A,上頂點為B,圓M過A,B兩點,當圓心M與原點O的距離最小時,求圓M的方程.

查看答案和解析>>

科目: 來源: 題型:

設(shè)A是圓x2+y2=1上的動點,點A在x軸上的投影為B,點P在AB上,記點P的軌跡為曲線C.過原點斜率為k的直線交曲線C于M,N兩點(其中M在第一象限),MG⊥x軸于點G,連接NG,直線NG交曲線C于另一點H.
(Ⅰ)若P為AB的中點,求曲線C的標準方程;
(Ⅱ)若點P滿足|AB|=m|PB|(m>0且m≠1),求曲線C的方程.并探究是否存在實數(shù)m,使得對任意k>0,都有MN⊥MH.若存在,求出m的值;若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

在△ABC中,
2a
sinA
-
b
sinB
-
c
sinC
=
 

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=x+alnx-1,a∈R.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若f(x)≥lnx對于任意x∈[1,+∞)恒成立,求a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

已知橢圓C的中心在坐標原點,焦點在x軸上,它的一個頂點恰好是拋物線y=
1
4
x2的焦點,已知橢圓C:
x2
a2
+
y2
b2
=1(a≥b≥1)的離心率
3
2
,
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)P為橢圓上一點,過右焦點的直線交橢圓A、B兩點且滿足
OA
+
OB
=t
OP
(O為坐標原點),當|AB|<
3
時,求實數(shù)t的取值范圍.

查看答案和解析>>

同步練習冊答案