相關(guān)習題
 0  209618  209626  209632  209636  209642  209644  209648  209654  209656  209662  209668  209672  209674  209678  209684  209686  209692  209696  209698  209702  209704  209708  209710  209712  209713  209714  209716  209717  209718  209720  209722  209726  209728  209732  209734  209738  209744  209746  209752  209756  209758  209762  209768  209774  209776  209782  209786  209788  209794  209798  209804  209812  266669 

科目: 來源: 題型:

在△ABC中,∠A,∠B,∠C的對邊分別為a,b,c,cos
A+C
2
=
3
3

(Ⅰ)求cosB的值;
(Ⅱ)若a+c=2
6
,b=2
2
,求△ABC的面積.

查看答案和解析>>

科目: 來源: 題型:

如圖,在四棱錐S-ABCD中,底面ABCD是直角梯形,AD垂直于AB和DC,側(cè)棱SA⊥底面ABCD,且SA=2,AD=DC=1,點E在SD上,且AE⊥SD.
(1)證明:AE⊥平面SDC;
(2)求三棱錐B-ECD的體積.

查看答案和解析>>

科目: 來源: 題型:

(理)已知函數(shù)f(x)對任意x∈R都有f(x)+f(1-x)=2.
(1)求f(
1
2
)和f(
1
n
)+f(
n-1
n
)(n∈N*)的值;
(2)數(shù)列f(x)滿足an=f(0)+f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)+f(1),(n∈N*)求證:數(shù)列{an}是等差數(shù)列;
(3)bn=
1
an-1
,Sn=
4n
2n+1
,Tn=b12+b22+b32+…+bn2,試比較Tn與Sn的大小.

查看答案和解析>>

科目: 來源: 題型:

2014年推出一種新型家用轎車,購買時費用為14.4萬元,每年應交付保險費、養(yǎng)路費及汽車油費共0.7萬元,
汽車維修費為:第一年無維修費用,第二年為0.2萬元,從第三年起,每年的維修費用均比上一年增加0.2萬元
(1)設(shè)該輛轎車使用n年的總費用(包括購買費用,保險費,養(yǎng)路費,汽車費及維修費)為f(n),求f(n)的表達式.
(2)這種汽車使用多少年報廢最合算(即該車使用多少年,年平均費用最少)?

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=lnx-
ax2
2
+(a-1)x-
3
2a
,其中a>0
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)f(x)有兩個相異的零點x1,x2,求實數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

已知數(shù)列{an}中,an=(2n-1)•2n-1,求其前n項和Sn

查看答案和解析>>

科目: 來源: 題型:

已知⊙O1和⊙O2相交于A,B兩點,過A點作⊙O1的切線交⊙O2于點E,連接EB并延長交⊙O1于點C,直線CA交⊙O2于點D.
(Ⅰ)如圖,當點D與點A不重合時,證明:EA=ED;
(Ⅱ)當點D與點A重合時,若BC=2,CE=8,求⊙O1的直徑.

查看答案和解析>>

科目: 來源: 題型:

已知橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)的左焦點F1(-c,0)(c>0)到圓C:(x-2)2+(y-4)2=1上任意一點距離的最大值為6,且過橢圓右焦點F2(c,0)與上頂點的直線與圓O:x2+y2=
1
2
相切.
(1)求橢圓E的方程;
(2)若直線l:y=-x+m與橢圓E交于A,B兩點,當以AB為直徑的圓與y軸相切時,求m的值.

查看答案和解析>>

科目: 來源: 題型:

在四棱錐P-ABCD中,底面ABCD為邊長為4的正方形,PA⊥平面ABCD,E為PB中點,PB=4
2

(Ⅰ)求證:平面APD⊥平面APB
(Ⅱ)求三棱錐D-AEC的體積.

查看答案和解析>>

科目: 來源: 題型:

經(jīng)統(tǒng)計,某校學生上學路程所需要時間全部介于0與50之間(單位:分鐘),現(xiàn)從在校學生中隨機抽取100人,按上學所需時間分組如下:第1組(0,10],第2組(10,20],第3組(20,30],第4組(30,40],第5組(40,50],得到如圖所示的頻率分布直方圖.
(Ⅰ)根據(jù)圖中數(shù)據(jù)求a的值;
(Ⅱ)若從第3,4,5組中用分層柚樣的方法抽取6人參與交通安全問卷調(diào)查,應從這三組中各抽取幾人?
(Ⅲ)在(Ⅱ)的條件下,若從這6人中隨機抽取2人參加交通安全宣傳活動,求第4組至少有1人被抽中的概率.

查看答案和解析>>

同步練習冊答案