相關(guān)習(xí)題
 0  210226  210234  210240  210244  210250  210252  210256  210262  210264  210270  210276  210280  210282  210286  210292  210294  210300  210304  210306  210310  210312  210316  210318  210320  210321  210322  210324  210325  210326  210328  210330  210334  210336  210340  210342  210346  210352  210354  210360  210364  210366  210370  210376  210382  210384  210390  210394  210396  210402  210406  210412  210420  266669 

科目: 來源: 題型:

數(shù)列{an}滿足:na1+(n-1)a2+…+2an-1+an=(
9
10
n-1+(
9
10
n-2+…+
9
10
+1(n=1,2,3…)
(1)求a1,a2,a3的值;
(2)求an的通項(xiàng)公式;
(3)若bn=-(n+1)an,試問是否存在正整數(shù)k,使得對于任意的正整數(shù)n,都有bn≤bk成立?若存在求出k的值,若不存在請說明理由.

查看答案和解析>>

科目: 來源: 題型:

畫出一個(gè)計(jì)算1+
1
2
+
1
3
+…+
1
50
的值的算法的程序框圖,題目提供了一種畫法,為直到型循環(huán)結(jié)構(gòu),如圖所示.
(1)請將此程序框圖補(bǔ)充完整:①處應(yīng)填:
 
;②處應(yīng)填:
 
;③處應(yīng)填:
 

(2)請畫出另一種為當(dāng)型循環(huán)結(jié)構(gòu)的畫法.

查看答案和解析>>

科目: 來源: 題型:

在△ABC中,點(diǎn)A(1,1),B(0,-2),C(4,2),D為AB的中點(diǎn),DE∥BC.
(Ⅰ)求BC邊上的高所在直線的方程;
(Ⅱ)求DE所在直線的方程.

查看答案和解析>>

科目: 來源: 題型:

(1)曲線C的直角坐標(biāo)方程為x2+y2-2x=0,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,求曲線C的極坐標(biāo)方程.
(2)已知伸縮變換表達(dá)式為
x′=2x
y′=
1
3
y
,曲線C在此變換下變?yōu)闄E圓
x2
2
+y′2=1,求曲線C的方程.

查看答案和解析>>

科目: 來源: 題型:

已知f(x)=ax-
1
x
-a+1
(1)當(dāng)a=2時(shí),求關(guān)于x的不等式f(x)>0的解集;
(2)當(dāng)a<0時(shí),求關(guān)于x的不等式f(x)<0的解集.

查看答案和解析>>

科目: 來源: 題型:

已知數(shù)列{an}、{bn},滿足bn=log2an(n∈N*),且{bn}為等差數(shù)列,a1=2,a3=8.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)試比較
1
a2-a1
+
1
a3-a2
+…+
1
an+1-an 
與1的大。

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=x3-2ax2+bx+c,
(1)當(dāng)c=0時(shí),f(x)在點(diǎn)P(1,3)處的切線平行于直線y=x+2,求a,b的值;
(2)若f(x)在點(diǎn)A(-1,8),B(3,-24)處有極值,求f(x)的表達(dá)式.

查看答案和解析>>

科目: 來源: 題型:

定義在(-1,1)的函數(shù)f(x)滿足:對任意x,y∈(-1,1)都有f(x)+f(y)=f(
x+y
1+xy
),當(dāng)x∈(-1,0)時(shí)有f(x)>0.
求證:f(
1
5
)+f(
1
11
)+…+f(
1
n2+3n+1
)
f(
1
2
)

查看答案和解析>>

科目: 來源: 題型:

已知圓C的圓心在坐標(biāo)原點(diǎn),且過點(diǎn)M(1 , 
3
).
(1)求圓C的方程;
(2)已知點(diǎn)P是圓C上的動(dòng)點(diǎn),試求點(diǎn)P到直線x+y-4=0的距離的最小值;
(3)若直線l與圓C相切于點(diǎn)M,求直線l的方程.

查看答案和解析>>

科目: 來源: 題型:

設(shè)x∈R,函數(shù)f(x)=cos2(ωx+φ)-
1
2
,(ω>0,0<φ<
π
2
).已知f(x)的最小正周期為π,且f(
π
8
)=
1
4

(1)求ω和φ的值;
(2)求f(x)的單調(diào)遞增區(qū)間;
(3)求函數(shù)f(x)在區(qū)間[
π
24
,
24
]上的最小值和最大值.

查看答案和解析>>

同步練習(xí)冊答案