相關(guān)習(xí)題
 0  235835  235843  235849  235853  235859  235861  235865  235871  235873  235879  235885  235889  235891  235895  235901  235903  235909  235913  235915  235919  235921  235925  235927  235929  235930  235931  235933  235934  235935  235937  235939  235943  235945  235949  235951  235955  235961  235963  235969  235973  235975  235979  235985  235991  235993  235999  236003  236005  236011  236015  236021  236029  266669 

科目: 來源: 題型:解答題

9.已知點P是直線y=x+2與橢圓$Γ:\frac{x^2}{a^2}+{y^2}=1(a>1)$的一個公共點,F(xiàn)1,F(xiàn)2分別為該橢圓的左右焦點,設(shè)|PF1|+|PF2|取得最小值時橢圓為C.
(1)求橢圓C的方程;
(2)已知A,B是橢圓C上關(guān)于y軸對稱的兩點,Q是橢圓C上異于A,B的任意一點,直線QA,QB分別與y軸交于點M(0,m),N(0,n),試判斷mn是否為定值,并說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

8.設(shè)△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,A為鈍角,且b=atanB.
(1)證明:$A-B=\frac{π}{2}$;
(2)求sinB+2sinC的取值范圍.

查看答案和解析>>

科目: 來源: 題型:選擇題

7.某初級中學(xué)有學(xué)生270人,其中一年級108人,二、三年級各81人,現(xiàn)要利用抽樣方法抽取10人參加某項調(diào)查,考慮選用簡單隨機抽樣、分層抽樣和系統(tǒng)抽樣三種方案,使用簡單隨機抽樣和分層抽樣時,將學(xué)生按一、二、三年級依次統(tǒng)一編號為1,2,…,270;使用系統(tǒng)抽樣時,將學(xué)生統(tǒng)一隨機編號1,2,…,270,并將整個編號依次分為10段.如果抽得號碼有下列四種情況:
①5,9,100,107,111,121,180,195,200,265,
②7,34,61,88,115,142,169,196,223,250;
③30,57,84,111,138,165,192,219,246,270;
④11,38,65,92,119,146,173,200,227,254;
關(guān)于上述樣本的下列結(jié)論中,正確的是( 。
A.②、④都可能為分層抽樣B.①、③都不能為分層抽樣
C.①、④都可能為系統(tǒng)抽樣D.②、③都不能為系統(tǒng)抽樣

查看答案和解析>>

科目: 來源: 題型:選擇題

6.下列有關(guān)命題的說法正確的是( 。
A.命題“若x2=1,則x=1”的否命題為:“若x2=1,則x≠1”
B.“x=-1”是“x2-5x-6=0”的必要不充分條件
C.命題“?x∈R,使得x2+x+1<0”的否定是:“?x∈R,均有x2+x+1<0”
D.命題“若x>1,則$\frac{1}{x}$<1”的逆否命題為真命題

查看答案和解析>>

科目: 來源: 題型:解答題

5.已知圓C:x2+y2=36,過點P(2,0)作圓C的任意弦.
(1)求這些弦的中點Q的軌跡方程.
(2)求y+x的最小值
(3)求$\frac{y}{x+12}$的最大值.

查看答案和解析>>

科目: 來源: 題型:選擇題

4.命題“?x∈R,2x+x2≤1”的否定是(  )
A.?x∈R,2x+x2>1B.?x∈R,2x+x2≥1C.?x∈R,2x+x2>1D.?x∈R,2x+x2≥1

查看答案和解析>>

科目: 來源: 題型:填空題

3.已知點A(x1,y1),B(x2,y2)是橢圓$\frac{{x}^{2}}{2}$+y2=1兩個不同的動點,且滿足x1•y1+x2•y2=-$\sqrt{2}$,則y12+y22的值是1.

查看答案和解析>>

科目: 來源: 題型:填空題

2.已知函數(shù)f(x)=$\frac{x^3}{3}+\frac{1}{2}a{x^2}$+2bx+c(a,b,c∈R),函數(shù)f(x)的兩個極值點分別在區(qū)間(0,1)與(1,2)內(nèi),則b-a+1的取值范圍是(2,5).

查看答案和解析>>

科目: 來源: 題型:解答題

1.計算定積分
(1)${∫}_{-1}^{1}$(x2+cosx)dx
(2)${∫}_{-2}^{2}$$(x+\sqrt{4-{x^2}})dx}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

20.若tan100°=a,則用a表示cos10°的結(jié)果為( 。
A.$-\frac{1}{a}$B.$-\frac{a}{{\sqrt{1+{a^2}}}}$C.$\frac{a}{{\sqrt{1+{a^2}}}}$D.$-\frac{1}{{\sqrt{1+{a^2}}}}$

查看答案和解析>>

同步練習(xí)冊答案