科目: 來源: 題型:
【題目】已知橢圓的對稱軸為坐標(biāo)軸,離心率為,且一個焦點坐標(biāo)為.
(1)求橢圓的方程;
(2)設(shè)直線與橢圓相交于兩點,以線段為鄰邊作平行四邊形,其中點在橢圓上, 為坐標(biāo)原點,求點到直線的距離的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】將向量=(, ), =(, ),…=(,)組成的系列稱為向量列{},并定義向量列{}的前項和.如果一個向量列從第二項起,每一項與前一項的差都等于同一個向量,那么稱這樣的向量列為等差向量列。若向量列{}是等差向量列,那么下述四個向量中,與一定平行的向量是 ( )
A. B. C. D.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知四棱臺的上下底面分別是邊長為2和4的正方形, = 4且 ⊥底面,點為的中點.
(Ⅰ)求證: 面 ;
(Ⅱ)在邊上找一點,使∥面,
并求三棱錐的體積.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知是橢圓的左、右焦點, 為坐標(biāo)原點,點在橢圓上,線段與軸的交點滿足.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)圓是以為直徑的圓,一直線與圓相切,并與橢圓交于不同的兩點、,當(dāng),且滿足時,求的面積的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓的中心在原點,焦點在軸,焦距為2,且長軸長是短軸長的倍.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè),過橢圓左焦點的直線交于、兩點,若對滿足條件的任意直線,不等式()恒成立,求的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】《九章算術(shù)》是我國古代內(nèi)容極為豐富的數(shù)學(xué)名著,書中有如下問題:“今有芻甍,下廣三丈,袤四丈,上袤二丈,無廣,高二丈,問積幾何?”其意思為:“今有底面為矩形的屋脊?fàn)畹腻涹w,下底面寬3丈,長4丈,上棱長2丈,高2丈,問:它的體積是多少?”已知1丈為10尺,該鍥體的三視圖如圖所示,則該鍥體的體積為( )
A. 10000立方尺 B. 11000立方尺 C. 12000立方尺 D. 13000立方尺
查看答案和解析>>
科目: 來源: 題型:
【題目】選修44:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,圓C的參數(shù)方程為,(t為參數(shù)),在以原點O為極點,x軸的非負(fù)半軸為極軸建立的極坐標(biāo)系中,直線的極坐標(biāo)方程為,A,B兩點的極坐標(biāo)分別為.
(Ⅰ)求圓C的普通方程和直線的直角坐標(biāo)方程;
(Ⅱ)點P是圓C上任一點,求△PAB面積的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知過拋物線的焦點,斜率為的直線交拋物線于兩點,且.
(1)求該拋物線的方程;
(2)已知拋物線上一點,過點作拋物線的兩條弦和,且,判斷直線是否過定點?并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com