科目: 來源: 題型:
【題目】已知拋物線C:y2=2px過點P(1,1).過點(0,)作直線l與拋物線C交于不同的兩點M,N,過點M作x軸的垂線分別與直線OP、ON交于點A,B,其中O為原點.
(Ⅰ)求拋物線C的方程,并求其焦點坐標(biāo)和準(zhǔn)線方程;
(Ⅱ)求證:A為線段BM的中點.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)是定義在[﹣1,1]上的奇函數(shù),且f(1)=1,若x,y∈[﹣1,1],x+y≠0有(x+y)[f(x)+f(y)]>0.
(1)判斷f(x)的單調(diào)性,并加以證明;
(2)解不等式 ;
(3)若f(x)≤m2﹣2am+1對所有x∈[﹣1,1],a∈[﹣1,1]恒成立.求實數(shù)m的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】在如圖所示的幾何體中,四邊形ABCD是平行四邊形,∠ABD=90°,EB⊥平面ABCD,EF∥AB,AB=2,EB= ,EF=1,BC= ,且M是BD的中點..
(1)求證:EM∥平面ADF;
(2)求直線DF和平面ABCD所成角的正切值;
(3)求二面角D﹣AF﹣B的大。
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖所示,已知點A(1,0),D(﹣1,0),點B,C在單位圓O上,且∠BOC= .
(Ⅰ)若點B( , ),求cos∠AOC的值;
(Ⅱ)設(shè)∠AOB=x(0<x< ),四邊形ABCD的周長為y,將y表示成x的函數(shù),并求出y的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知圓C:(x﹣3)2+(y﹣4)2=4,直線l過定點A(1,0).
(1)若l與圓C相切,求l的方程;
(2)若l與圓C相交于P、Q兩點,若|PQ|=2 ,求此時直線l的方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)函數(shù)f(x)= (Ⅰ)當(dāng) 時,求函數(shù)f(x)的值域;
(Ⅱ)若函數(shù)f(x)是(﹣∞,+∞)上的減函數(shù),求實數(shù)a的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)= cosx(sinx+cosx). (Ⅰ)若0<α< ,且sinα= ,求f(α)的值;
(Ⅱ)求函數(shù)f(x)的最小正周期及單調(diào)遞增區(qū)間.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知動點P(x,y)滿足方程xy=1(x>0).
(Ⅰ)求動點P到直線l:x+2y﹣ =0距離的最小值;
(Ⅱ)設(shè)定點A(a,a),若點P,A之間的最短距離為2 ,求滿足條件的實數(shù)a的取值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在四棱錐P—ABCD中,平面PAD⊥底面ABCD,其中底面ABCD為等腰梯形,AD∥BC,PA=AB=BC=CD=2,PD=2,PA⊥PD,Q為PD的中點.
(Ⅰ)證明:CQ∥平面PAB;
(Ⅱ)求直線PD與平面AQC所成角的正弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PA⊥底面ABCD,AD⊥AB,DC∥AB,PA=1,AB=2,PD=BC= .
(1)求證:平面PAD⊥平面PCD;
(2)試在棱PB上確定一點E,使截面AEC把該幾何體分成的兩部分PDCEA與EACB的體積比為2:1;
(3)在(2)的條件下,求二面角E﹣AC﹣P的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com