相關習題
 0  257947  257955  257961  257965  257971  257973  257977  257983  257985  257991  257997  258001  258003  258007  258013  258015  258021  258025  258027  258031  258033  258037  258039  258041  258042  258043  258045  258046  258047  258049  258051  258055  258057  258061  258063  258067  258073  258075  258081  258085  258087  258091  258097  258103  258105  258111  258115  258117  258123  258127  258133  258141  266669 

科目: 來源: 題型:

【題目】某學校高三年級有學生500人,其中男生300人,女生200人,為了研究學生的數學成績是否與性別有關,現(xiàn)采用分層抽樣的方法,從中抽取了100名學生,先統(tǒng)計了他們期中考試的數學分數,然后按性別分為男、女兩組,再將兩組學生的分數分成5組:[100,110),[110,120),[120,130),[130,140),[140,150]分別加以統(tǒng)計,得到如圖所示的頻率分布直方圖.
附:K2=
(1)從樣本中分數小于110分的學生中隨機抽取2人,求兩人恰好為一男一女的概率;
(2)若規(guī)定分數不小于130分的學生為“數學尖子生”,請你根據已知條件完成2×2列聯(lián)表,并判斷是否有90%的把握認為“數學尖子生與性別有關”?

P(K2≥k0

0.100

0.050

0.010

0.001

k0

2.706

3.841

6.635

10.828

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓C: =1(a>b>0)上的動點到焦點距離的最小值為 -1.以原點為圓心、橢圓的短半軸長為半徑的圓與直線x﹣y+ =0相切.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若過點M(2,0)的直線與橢圓C相交于A,B兩點,P為橢圓上一點,且滿足 + =t (O為坐標原點).當|AB|= 時,求實數t的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】在四邊形ABCD中,已知 , =(6,1), =(x,y), =(﹣2,﹣3).
(1)求用x表示y的關系式;
(2)若 ,求x、y值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知 的夾角為60°, , ,當實數k為何值時,
(1)
(2)

查看答案和解析>>

科目: 來源: 題型:

【題目】若命題p:曲線 =1為雙曲線,命題q:函數f(x)=(4﹣a)x在R上是增函數,且p∨q為真命題,p∧q為假命題,則實數a的取值范圍是

查看答案和解析>>

科目: 來源: 題型:

【題目】某蔬菜基地種植西紅柿,由歷年市場行情得知,從二月一日起的300天內,西紅柿場售價與上市時間的關系如圖一的一條折線表示;西紅柿的種植成本與上市時間的關系如圖二的拋物線段表示.

(1)寫出圖一表示的市場售價與時間的函數關系式p=f(t);寫出圖二表示的種植成本與時間的函數關系式Q=g(t);
(2)認定市場售價減去種植成本為純收益,問何時上市的西紅柿純收益最大?(注:市場售價各種植成本的單位:元/102㎏,時間單位:天)

查看答案和解析>>

科目: 來源: 題型:

【題目】已知0<a<1,函數f(x)=loga(ax﹣1)
(I)求函數f(x)的定義域;
(Ⅱ)判斷f(x)的單調性;
(Ⅲ)若m滿足f(1﹣m)≥f(1﹣m2),求m的范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】設集合A={x|25≤2x≤4},B={x|x2+2mx﹣3m2<0,m>0}.

(1)若m=2,求A∩B;

(2)若BA,求實數m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖所示,在四棱錐P﹣ABCD中,底面ABCD是棱長為2的正方形,側面PAD為正三角形,且面PAD⊥面ABCD,E、F分別為棱AB、PC的中點.
(1)求證:EF∥平面PAD;
(2)求三棱錐B﹣EFC的體積;
(3)求二面角P﹣EC﹣D的正切值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數f(x)=x2+bx+c,其圖象與y軸的交點為(0,1),且滿足f(1﹣x)=f(1+x).

(1)求f(x);

(2)設 m0,求函數g(x)在[0,m]上的最大值;

(3)設h(x)=lnf(x),若對于一切x∈[0,1],不等式h(x+1﹣t)<h(2x+2)恒成立,求實數t的取值范圍.

查看答案和解析>>

同步練習冊答案