相關(guān)習題
 0  258376  258384  258390  258394  258400  258402  258406  258412  258414  258420  258426  258430  258432  258436  258442  258444  258450  258454  258456  258460  258462  258466  258468  258470  258471  258472  258474  258475  258476  258478  258480  258484  258486  258490  258492  258496  258502  258504  258510  258514  258516  258520  258526  258532  258534  258540  258544  258546  258552  258556  258562  258570  266669 

科目: 來源: 題型:

【題目】已知過拋物線y2=2px(p>0)的焦點,斜率為2 的直線交拋物線于A(x1 , y1)和B(x2 , y2)(x1<x2)兩點,且|AB|=9,
(1)求該拋物線的方程;
(2)O為坐標原點,C為拋物線上一點,若 ,求λ的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)f(x)=x2+4x+a﹣5,g(x)=m4x1﹣2m+7.
(1)若函數(shù)f(x)在區(qū)間[﹣1,1]上存在零點,求實數(shù)a的取值范圍;
(2)當a=0時,若對任意的x1∈[1,2],總存在x2∈[1,2],使f(x1)=g(x2)成立,求實數(shù)m的取值范圍;
(3)若y=f(x)(x∈[t,2])的置于為區(qū)間D,是否存在常數(shù)t,使區(qū)間D的長度為6﹣4t?若存在,求出t的值;若不存在,請說明理由. (注:區(qū)間[p,q]的長度q﹣p)

查看答案和解析>>

科目: 來源: 題型:

【題目】某市居民自來水收費標準如下:每戶每月用水不超過5噸時,每噸為2.6元,當用水超過5噸時,超過部分每噸4元,某月甲、乙兩戶共交水費y元,已知甲、乙兩戶該月用水量分別為5x,3x噸.
(1)求y關(guān)于x的函數(shù);
(2)若甲、乙兩戶該月共交水費34.7元,分別求甲、乙兩戶該月的用水量和水費.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知向量 =(m,﹣1), =(
(1)若m=﹣ ,求 的夾角θ;
(2)設(shè) . ①求實數(shù)m的值;
②若存在非零實數(shù)k,t,使得[ +(t2﹣3) ]⊥(﹣k +t ),求 的最小值.

查看答案和解析>>

科目: 來源: 題型:

【題目】設(shè)橢圓 的離心率 ,橢圓上一點A到橢圓C兩焦點的距離之和為4.
(1)求橢圓C的方程;
(2)直線l與橢圓交于A,B兩點,且AB中點為 ,求直線l方程.

查看答案和解析>>

科目: 來源: 題型:

【題目】四邊形ABCD是正方形,△PAB與△PAD均是以A為直角頂點的等腰直角三角形,點F是PB的中點,點E是邊BC上的任意一點.

(1)求證:AF⊥EF;
(2)求二面角A﹣PC﹣B的平面角.

查看答案和解析>>

科目: 來源: 題型:

【題目】某同學用“五點法”畫函數(shù)f(x)=Asin(ωx+φ)(ω>0,|φ|< )在某一個周期內(nèi)的圖象時,列表并填入了部分數(shù)據(jù),如表:

ωx+φ

0

π

x

f(x)

0

3

0

﹣3

0


(1)請將表中數(shù)據(jù)補充完整,并直接寫出函數(shù)f(x)的解析式;
(2)若將函數(shù)f(x)的圖象上所有點的橫坐標變?yōu)樵瓉淼?倍,縱坐標不變,得到函數(shù)g(x)的圖象,求當x∈[﹣ , ]時,函數(shù)g(x)的值域;
(3)若將y=f(x)圖象上所有點向左平移θ(θ>0)個單位長度,得到y(tǒng)=h(x)的圖象,若=h(x)圖象的一個對稱中心為( ),求θ的最小值.

查看答案和解析>>

科目: 來源: 題型:

【題目】圓x2+y2﹣2x+4y﹣20=0截直線5x﹣12y+c=0的弦長為8,
(1)求c的值;
(2)求直線y=x﹣11上的點到圓上點的最短距離.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知向量 =(cosα,sinα), =(﹣2,2).
(1)若 = ,求(sinα+cosα)2的值;
(2)若 ,求sin(π﹣α)sin( )的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知a>0且a≠1,設(shè)
命題p:函數(shù)y=logax在區(qū)間(0,+∞)內(nèi)單調(diào)遞減;
q:曲線y=x2+(2a﹣3)x+1與x軸有兩個不同的交點,
如果p∧q為真命題,試求a的取值范圍.

查看答案和解析>>

同步練習冊答案