相關(guān)習(xí)題
 0  260993  261001  261007  261011  261017  261019  261023  261029  261031  261037  261043  261047  261049  261053  261059  261061  261067  261071  261073  261077  261079  261083  261085  261087  261088  261089  261091  261092  261093  261095  261097  261101  261103  261107  261109  261113  261119  261121  261127  261131  261133  261137  261143  261149  261151  261157  261161  261163  261169  261173  261179  261187  266669 

科目: 來源: 題型:

【題目】已知定義域為A的函數(shù)f(x),若對任意的x1,x2A,都有f(x1x2)f(x1)≤f(x2),則稱函數(shù)f(x)定義域上的M函數(shù),給出以下五個函數(shù):

f(x)2x3,xRf(x)x2,x;f(x)x21,xf(x)sin x,xf(x)log2x,x[2,+∞)

其中是定義域上的M函數(shù)的有(  )

A. 2 B. 3

C. 4 D. 5

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖是一幾何體的平面展開圖,其中ABCD為正方形,E,F分別為PAPD的中點,

在此幾何體中,給出下面四個結(jié)論:

直線BE與直線CF異面; 直線BE與直線AF異面;

直線EF平面PBC; 平面BCE平面PAD.

其中正確的有(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目: 來源: 題型:

【題目】已知雙曲線的焦點是橢圓的頂點 為橢圓的左焦點且橢圓經(jīng)過點.

1)求橢圓的方程;

2)過橢圓的右頂點作斜率為的直線交橢圓于另一點,連結(jié)并延長交橢圓于點當(dāng)的面積取得最大值時,求的面積.

查看答案和解析>>

科目: 來源: 題型:

【題目】共享單車是指企業(yè)的校園,地鐵站點、公交站點、居民區(qū)、商業(yè)區(qū)、公共服務(wù)區(qū)等提供自行車單車共享服務(wù),是一種分時租賃模式,某共享單車企業(yè)為更好服務(wù)社會,隨機調(diào)查了100人,統(tǒng)計了這100人每日平均騎行共享單車的時間(單位:分鐘),由統(tǒng)計數(shù)據(jù)得到如下頻率分布直方圖,已知騎行時間在三組對應(yīng)的人數(shù)依次成等差數(shù)列

(1)求頻率分布直方圖中的值.

(2)若將日平均騎行時間不少于80分鐘的用戶定義為“忠實用戶”,將日平均騎行時間少于40分鐘的用戶為“潛力用戶”,現(xiàn)從上述“忠實用戶”與“潛力用戶”的人中按分層抽樣選出5人,再從這5人中任取3人,求恰好1人為“忠實用戶”的概率.

查看答案和解析>>

科目: 來源: 題型:

【題目】函數(shù)f(x)=(m2m-1)·是冪函數(shù),對任意x1,x2∈(0,+∞)且x1x2,滿足,若a,b∈R且ab>0,ab<0,則f(a)+f(b)的值(  )

A. 恒大于0 B. 恒小于0

C. 等于0 D. 無法判斷

查看答案和解析>>

科目: 來源: 題型:

【題目】給出下列函數(shù):①f(x)=()x;②f(x)=x2;③f(x)=x3;④f(x)=;⑤f(x)=log2x.其中滿足條件f()>(0<x1<x2)的函數(shù)的個數(shù)是(  )

A. 1 B. 2

C. 3 D. 4

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓C,其中e為橢圓離心率),焦距為2,過點M40)的直線l與橢圓C交于點A,B,點BAM之間.又點A,B的中點橫坐標(biāo)為

)求橢圓C的標(biāo)準(zhǔn)方程;

)求直線l的方程.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知點為拋物線C:的焦點,過點的動直線與拋物線C交于,兩點,如圖當(dāng)直線軸垂直時,

(1)求拋物線C的方程;

(2)已知點,設(shè)直線PM的斜率為,直線PN的斜率為請判斷是否為定值,若是,寫出這個定值,并證明你的結(jié)論;若不是,說明理由

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)

(1)求曲線在點處的切線方程;

(2)令,討論的單調(diào)性并判斷有無極值,若有,求出極值.

查看答案和解析>>

科目: 來源: 題型:

【題目】【2018屆吉林省普通中學(xué)高三第二次調(diào)研】設(shè)橢圓的左焦點為,右頂點為,離心率為,短軸長為,已知是拋物線的焦點.

(1)求橢圓的方程和拋物線的方程;

(2)若拋物線的準(zhǔn)線上兩點關(guān)于軸對稱,直線與橢圓相交于點異于點),直線軸相交于點,若的面積為,求直線的方程.

查看答案和解析>>

同步練習(xí)冊答案