相關(guān)習(xí)題
 0  261030  261038  261044  261048  261054  261056  261060  261066  261068  261074  261080  261084  261086  261090  261096  261098  261104  261108  261110  261114  261116  261120  261122  261124  261125  261126  261128  261129  261130  261132  261134  261138  261140  261144  261146  261150  261156  261158  261164  261168  261170  261174  261180  261186  261188  261194  261198  261200  261206  261210  261216  261224  266669 

科目: 來源: 題型:

【題目】已知橢圓Ea﹥b﹥0)的一個焦點與短軸的兩個端點是正三角形的三個頂點,點在橢圓E.

)求橢圓E的方程;

)設(shè)不過原點O且斜率為的直線l與橢圓E交于不同的兩點AB,線段AB的中點為M,直線OM與橢圓E交于C,D,證明:|MA|·|MB|=|MC|·|MD|.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,為保護河上古橋OA,規(guī)劃建一座新橋BC,同時設(shè)立一個圓形保護區(qū).規(guī)劃要求:新橋BC與河岸AB垂直;保護區(qū)的邊界為圓心M在線段OA上并與BC相切的圓,且古橋兩端OA到該圓上任意一點的距離均不少于80 m.經(jīng)測量,點A位于點O正北方向60 m,C位于點O正東方向170 m(OC為河岸),tanBCO=.

1)求新橋BC的長;

2)當(dāng)OM多長時,圓形保護區(qū)的面積最大?

查看答案和解析>>

科目: 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,直線lyt(t≠0)交y軸于點M,交拋物線Cy2=2px(p>0)于點P,M關(guān)于點P的對稱點為N,連結(jié)ON并延長交C于點H.

(1)求;

(2)除H以外,直線MHC是否有其它公共點?說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,曲線C1 (t為參數(shù),t≠0),其中0≤απ.在以O為極點,x軸正半軸為極軸的極坐標(biāo)系中,曲線C2ρ2sin θ,C3ρ2cos θ.

(1)C2C3交點的直角坐標(biāo);

(2)C1C2相交于點A,C1C3相交于點B,求|AB|的最大值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知圓Cx2+(ya)2=4,點A(1,0).

(1)當(dāng)過點A的圓C的切線存在時,求實數(shù)a的取值范圍;

(2)設(shè)AM、AN為圓C的兩條切線,M、N為切點,當(dāng)MN時,求MN所在直線的方程.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖所示,射線OA、OB分別與x軸正半軸成45°30°角,過點P(1,0)作直線AB分別交OA、OBA、B兩點,當(dāng)AB的中點C恰好落在直線yx上時,求直線AB的方程.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)f(x)的導(dǎo)函數(shù)f′(x),且對任意x>0,都有f′(x)>.

(1)判斷函數(shù)F(x)=在(0,+∞)上的單調(diào)性;

(2)設(shè)x1,x2∈(0,+∞),證明:f(x1)+f(x2)<f(x1x2);

(3)請將(2)中結(jié)論推廣到一般形式,并證明你所推廣的結(jié)論.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖所示,已知兩個正方形ABCDDCEF不在同一平面內(nèi),M,N分別為AB,DF的中點.

(1)若平面ABCD⊥平面DCEF,求直線MN與平面DCEF所成角的正弦值;

(2)用反證法證明:直線MEBN是兩條異面直線.

查看答案和解析>>

科目: 來源: 題型:

【題目】為了凈化空氣,某科研單位根據(jù)實驗得出,在一定范圍內(nèi),每噴灑1個單位的凈化劑,空氣中釋放的濃度y(單位:毫克/立方米)隨著時間x(單位:天)變化的函數(shù)關(guān)系式近似為y 若多次噴灑,則某一時刻空氣中的凈化劑濃度為每次投放的凈化劑在相應(yīng)時刻所釋放的濃度之和.由實驗知,當(dāng)空氣中凈化劑的濃度不低于4(毫克/立方米)時,它才能起到凈化空氣的作用.

(1)若一次噴灑4個單位的凈化劑,則凈化時間可達幾天?

(2)若第一次噴灑2個單位的凈化劑,6天后再噴灑a(1≤a≤4)個單位的藥劑,要使接下來的4天中能夠持續(xù)有效凈化,試求a的最小值(精確到0.1,參考數(shù)據(jù): 取1.4).

查看答案和解析>>

科目: 來源: 題型:

【題目】已知正項等比數(shù)列{an}(nN*),首項a13,前n項和為Sn,且S3a3、S5a5,S4a4成等差數(shù)列.

1)求數(shù)列{an}的通項公式;

2)數(shù)列{nan}的前n項和為Tn,若對任意正整數(shù)n,都有Tn[a,b],求ba的最小值.

查看答案和解析>>

同步練習(xí)冊答案